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Thesis directed by Prof. Brian Argrow

The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-

body dynamics. In part because of computational constraints, simpler models based upon the

ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied tran-

sition regime of Earth’s thermosphere where gas dynamic simulation is difficult yet wherein many

spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is

explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that tra-

ditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding

principles which capitalize on the availability of increasing computational methods and resources.

Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided

by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method

in the transition regime. The application of the direct simulation Monte Carlo method to this class

of problems is examined in detail with a new code specifically designed for engineering-level rarefied

aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric

flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be pre-

dicted using simpler approaches. The results of this straightforward approach to the aero–orbital

coupled-field problem highlight the possibilities for future improvements in drag prediction, control

system design, and atmospheric science. Furthermore, a number of challenges for future work are

identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.
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Introduction

Spacecraft in planetary orbits are subject to gas forces originating from movement through

the planet’s atmosphere. This presents a problem in modeling spacecraft dynamics that has thus

far been treated as mostly ballistic, meaning that aerodynamics is only represented in dynamic

models in terms of a few basic inputs, namely the mass, projected area and possibly the surface

properties of an object. Since the 1960s, effort has been made to model and estimate the drag

on artificial satellites and space debris with the goal of predicting orbital decay and determining

atmospheric density. This work presents the satellite drag class of problems in a new way that

places a demand on higher fidelity modeling of spacecraft dynamics in orbit that extends beyond

drag to include body dynamics and the coupling they bring to the fluid-body system in rarefied

flows.

Many human-created satellites orbit at low altitudes; between 200km and 500km. For small

objects such as spacecraft in this region, Earth’s atmosphere begins to make a transition from a

continuum gas to a rarefied one. This transition region is characterized by a number of parameters,

all of which surround the elementary measure of rarefaction, the Knudsen number. The Knud-

sen number Kn is the ratio of the mean free path λ of molecules in a gas environment to some

characteristic length Lc:

Kn =
λ

Lc
(1)

For Kn less than about 0.01, gas can be considered to be described using continuum models, namely

the Navier-Stokes or Euler equations which rely on a differential, analytical method of modeling

fluid transport and evolution. As Kn approaches infinity, molecules are assumed to never collide
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with each other, a regime which is termed free-molecular (FM) flow. In reality, free-molecular

flow is often an acceptable assumption to make for Kn & 100. The region between these two

limits is the continuum-rarefied transition (often referred to as simply “transition”) regime where

the continuum assumption can no longer be made with confidence. Figure 1 shows the various

regimes of fluid dynamics and their associated Knudsen numbers. Many spacecraft operate in

Inviscid
Limit

Kn
1010.10.01

Navier−StokesEuler

Boltzmann Equation Boltzmann Equation
Collisionless Discrete Particle Models

Continuum Fluid Models

100

Free−Molecular
Limit

N/A

Figure 1: Ranges of Knudsen numbers over which various descriptions are valid.

the transition region of Earth’s atmosphere or descend through it during re-entry, thus making

understanding of the dynamic effects of the gas on them difficult. This is because tools exist for

numerical simulation of both limits of the continuum, but few exist for transition. In the continuum

regime, a wealth of traditional Computational Fluid Dynamics (CFD) methods exist, many of which

solve an approximation of the Navier-Stokes (NS) equations or some form of general multi- or even

single-fluid gas transport equations. In the highly rarefied and free-molecular regimes, the Direct

Simulation Monte Carlo (DSMC) method, pioneered by G. A. Bird [3] has become the standard

method of choice. There are also approaches for free-molecular flow that are entirely analytical

which derive from kinetic theory. Part of the challenge of providing better models for spacecraft in

transition flow involves developing new computational tools. The other part is developing methods

to use the information these tools provide to refine how spacecraft motion is characterized and

analyzed.
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A New (Old) Problem in Satellite Dynamics

In the field of atmospheric flight, early models of fluid interactions were simple and focused

on understanding lift and drag. For example, linear inviscid potential flow theory was often used to

predict fluid forces until the advent of computers and CFD due to its simplicity, and mathematically

complete and tractable nature. For early aircraft, the objective was simply to achieve sustained

flight. As airplane technology improved, higher-performing aircraft were desired in order to meet the

needs of commercial and civil industry, and the military. This requirement drove the development

of better fluid models, so as to take the description of airplanes in flight from the realm of only

inviscid drag and lift to, eventually, six degree-of-freedom (DOF) dynamic models and associated

control theory deriving from more realistic fluid models–all of which were a consequence of the

appearance of better mathematical and computational tools and improved understanding of the

physics of fluids.

With the arrival of spacecraft, a similar evolution took place. However, the current level of

sophistication in spacecraft dynamics is primarily a result of advances in control theory. Rarefied

gas effects are introduced as low-order disturbances, often in the form of parameters such as the

ballistic coefficient

B =
CDA

m
(2)

where A is some characteristic area, often a projected frontal area, and m is the mass of the

spacecraft. The field of satellite aerodynamics has been traditionally focused on the computation

of ballistic coefficients and drag coefficients for orbit prediction [14, 32, 17, 16]. Drag modeling, in

the form of the drag coefficient CD has been the focus of much of this field since the 1960s, with

little attempt to treat spacecraft dynamics with the same rigor as aircraft dynamics. The reason

for this oversight is partly due to the lack of available tools to describe rarefied gas dynamics. Now,

tools such as DSMC and other discrete particle methods can provide the information needed to

begin examining this problem in greater depth.
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Specific Motivations

Although numerous reasons exist to obtain better models of any physical system, there is a

set of motivations for satellite dynamics which may be recognized as being paramount. They are:

• Improvements in satellite ballistic drag modeling and subsequent prediction of orbital decay.

• Better atmospheric science due to improved measurement accuracy.

• Wide implications for spacecraft control system design and subsequent vehicle design.

Satellite Ballistic Drag

Most drag and ballistic coefficient models are developed to predict changes in orbital param-

eters [14] and to predict de-orbit trajectories [6]. Prediction of when and where spacecraft

or other objects will impact the surface of the Earth remains difficult but necessary. Few

atmospheric entries are predicted to acceptable accuracy in time or space. As examples,

the lack of precision in the prediction of the entries of the UARS [68], ROSAT [20], and

Phobos-Grunt [36] spacecraft refocused attention on the need for better models of both the

upper atmosphere and the dynamics of low-orbital flight and atmospheric entry. The UARS

spacecraft was only predicted to enter the “atmospheric interface”[50] with little other infor-

mation about the remainder of its trajectory. Figure 2 shows the available track as observed

by NASA, in which the official description of the craft’s final location was “...over a broad,

remote ocean area in the Southern Hemisphere.” [50]. For the Phobos-Grunt spacecraft,

predictions were similarly vague. Figure 3 shows a range of predictions of re-entry using

Two-Line Element(TLE) data by Kelso[36]. These predictions use up-to-date observations

of the actual orbit. By 12 January 2012, the predicted time was 16 January 2012, which was

determined later to be the actual time. Yet, predictions continued after 12 January such

that when 16 January was reached, current predictions of 18 January were made, when in

fact, the spacecraft had already entered. Estimates span a range of roughly three days before
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Figure 2: NASA UARS spacecraft final atmospheric re-entry track (image taken from NASA [50]).

Figure 3: Phobos-Grunt spacecraft final atmospheric re-entry time predictions using TLEs (image
by T.S. Kelso [36]).

and after the actual time of entry. The reasons for the lack of higher levels of accuracy in

these types of estimations are well-articulated by Stansbery and Johnson [68]:
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“The two principal and not completely independent influences on reentry pre-
diction accuracy are atmospheric density and vehicle stability.
...The initiation or change of tumbling modes can result in a change in the
vehicle’s drag profile, which, in turn, can affect the time and location of reen-
try.”

Since the ballistic and drag coefficients are usually computed from large data sets com-

piled over numerous orbits, it is obvious that such models cannot appropriately account for

short-period attitude changes, and gas-surface interactions associated with rapidly changing

altitude, orientation and speed. Furthermore, the drag profile mentioned here directly relates

to body-dynamics of spacecraft in the transition flow experienced during re-entry.

Atmospheric Science

Spacecraft have been used as instruments for measuring atmospheric properties, most no-

tably density. Atmospheric models are improved by inferring density from satellite drag

measurements [32, 33, 37]. Furthermore, the physics of molecular interactions with surfaces

of these spacecraft[57, 49, 15, 9] or general engineering approaches [21, 72] are studied in

order to facilitate such measurements. Rigid-body dynamics are seldom included in these

analyses. Better models of body dynamics and more accurate numerical techniques (e.g.

DSMC) will yield improvements in density models and other necessary information about

the upper atmosphere.

Controls and Design

Classical aircraft dynamics utilizes a single-point Taylor series expansion about some equi-

librium condition, usually the “trimmed” flight condition. For cruise and mild maneuvers,

departures from the equilibrium state are small enough that the equations of motion are

effectively linear within a small space surrounding the equilibrium point. Many actively

controlled spacecraft engage in maneuvers with large attitude changes that make single-
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point expansion linear dynamics useless. Even when trimmed flight can be assumed, there

exist few truly sufficient descriptions of spacecraft aerodynamics. Poorly-modeled natural

dynamics makes it more difficult to understand and design control systems and prevents

those systems from achieving high levels of efficiency. Instead of expending energy to correct

or maintain a prescribed attitude which is being perturbed by aerodynamic forces, systems

could be designed to cooperate with the natural dynamics rather than conflict with them.

Much like atmospheric aircraft, spacecraft in low Earth orbit should be capable of making

adjustments to their attitude using control surfaces or other novel methods. This has wide

implications for the design of control systems themselves, and of spacecraft hardware, which

are currently being overlooked.

Overview

Several decades of development of the direct simulation Monte Carlo method (DSMC) [42, 4,

54, 3] has enabled high-fidelity modeling of objects in rarefied flows, and now with reasonable com-

putational turnaround. Classical methods for aircraft flight dynamics have long been established,

particularly in the context of the linearized, rigid-body equations of motion (e.g., [65] and [23]).

There appears to be an opportunity to combine DSMC aerodynamics with the methods of linearized

flight dynamics for time-dependent and orbit-location-dependent satellite attitude dynamics and

orbit prediction. The overall goal of this work may be stated as follows:

Descriptions of the motion of spacecraft or orbital debris of arbitrary geometry,
mass and other physical properties should include body dynamics resulting from
aerodynamic inputs in order to achieve a degree of accuracy similar to what is
currently available in atmospheric aircraft flight. The requirements for being capable
of creating models for this improvement are the creation of and improvement in
rarefied gas dynamics simulation tools such as DSMC and the application of these
tools as inputs to rigid-body dynamics in a manner similar to that seen in aircraft
flight, but with specific consideration for spacecraft.

Rather than promoting the use of any specific method for solving any specific problem, the inten-

tion of this work is to elevate to prominence the class of problems that arise in spacecraft flight
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owing to aerodynamics in the rarefied gas environment. The increase in knowledge of gas kinetics,

the availability of data and application of engineering-level problems subject to upper-atmospheric

physics, and the appearance and maturity of tools such as DSMC necessitates a revisiting of this

subject with a greater degree of scrutiny. Thus, while there is an abundance of information pre-

sented, most of it is presented by making qualitative arguments supported by a set of relevant,

quantitative demonstrations.

Such demonstrations are in the form of coupling of analytical and computational (DSMC)

rarefied gas dynamics with the methods of classical aircraft dynamics. The goal is to develop

methods to generalize non-linear spacecraft aerodynamics which are not restricted to a single-point

expansion, nor that treats aerodynamic forces as unstructured disturbances. This starts with a

set of spacecraft parameters for arbitrary geometry and mass properties, with flight conditions

based on orbital altitude and speed used as inputs to a simulation. As a demonstrative example,

this family of methods is first applied to the classical NACA-0012 airfoil in two-dimensional (2D)

free-molecular flow with a simple single degree-of-freedom dynamic model coupled with well-known

analytical relations that describe molecular fluxes and forces for simple geometries. This is followed

with dynamic simulations of the same airfoil geometry with a DSMC flow solver coupled with the

same dynamic model. Additionally, one set of general conditions (per regime) that are common in

low Earth orbit is imposed to limit the analysis to a computationally tractable parameter space.

Proposed is the creation of a set of tools that are centered around a new DSMC code (Sec-

tion 1.2) and method for describing rigid-body dynamics of satellites in orbit, with emphasis on

operation in the transition regime. The breakdown of this approach is shown schematically in Fig-

ure 4. The topmost goal is the aforementioned “new” problem. A six-DOF method may require

considerable time, and thus, it is sufficient to provide a framework and set of guiding principles and

examples in lower dimensions. The Tools half of the tree in Figure 4 relies on the improvement of

DSMC as a simulation tool. In truth, DSMC is mature enough to be capable of providing much

of the information required to complete the final goal. However, there are many smaller obstacles

to its usage. One of these is the availability of suitable software implementations (codes) in the
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Analysis
Simulation and

Rarefied and
Transition
CFD Tools

DSMC

(Voldipar)
CodeIn−House

Interaction

Various improved
methods/models
e.g. geometry

Coupling
Methods

Insight from
aircraft dynamics

Dynamics
Modeling

Gas−Surface

Semi−Analytical
Approximation

Models

High−Fidelity Spacecraft

Flow−Motion
Coupling

w/rarefied aerodynamics

Continuum
CFD

Figure 4: Schematic diagram of the hierarchy and relation of the elemental units of this research.
Dashed boxes are optional but possibly very useful elements (DSMC - Direct Simulation Monte
Carlo).

community. Codes by G.A. Bird are often considered suitable for benchmarking purposes but have

limitations in inputs (namely, lack of certain gas-surface interactions) and usability. It was deemed

worthwhile to develop a new code to suit the needs of research-level development. Thus, with

complete control of the creation and development of such a new code, optimal simulation freedom

is achieved. This code, currently in usable state for 2D problems is discussed in detail in Chapter 1.

The Dynamics half consists of looking for ways to describe a spacecraft’s rigid-body dynamics such

that either analytical insight or simulation fidelity, or both can be achieved. Preliminary investi-

gations begin with using the analytical free-molecular models in Chapter 3 to understand how to

use inputs from a simulation like DSMC to create models of dynamics. This effort then extends to



www.manaraa.com

10

discuss approximation methods like those introduced in Chapter 4 which seek to provide a single set

of data that can be said to describe the motion of an arbitrary rigid body in rarefied and transition

flow in a closed-form manner.

In Chapter 5 one of the most difficult problems in flow-motion coupling is addressed in the

context of rarefied gas dynamics. The problem is how to accurately model the feedback system

which arises in a rarefied gas system when an object is moving within it. This is of interest in that

rigid-body dynamics naturally includes treatment of rates of linear motion and of rotation which

create a challenge for modeling these systems. This class of problems falls under the general category

of fluid-structure interaction or coupled-field problems. In order to proceed with simulations of

rarefied aerodynamics of rigid bodies, the effect of rotation rates of a single DOF system are

examined using numerical studies.

Chapter 6 demonstrates the application of methods from all previous chapters to present

case studies of two objects in transition flow. The objects are simulated in the natural 2D orbital

frame and incorporate body dynamics by inclusion of the single DOF given by the angle of attack.

DSMC is used to generate high-resolution data sets which represent aerodynamic forces and moment

acting on the objects as they orbit within the lower thermosphere. Time-accurate simulations of

the objects’ motion in orbit as they descend and enter Earth’s atmosphere are given. Detailed

dynamic characteristics of these systems are examined, thereby gaining insight into transition flow

dynamics that has not been available before. Such simulations set a precedent for further work

in rarefied aerodynamics of spacecraft. Finally, extensions to three-dimensional (3D) systems and

other necessary directions for future work are discussed.
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Review of DSMC and Introduction to a New Code

The Direct Simulation Monte Carlo (DSMC) method is a numerical method originally de-

veloped by Bird [3] for simulating rarefied fluid flow. Its physically realistic but phenomenological

approach, as an alternative to direct discretization of the Boltzmann equation, has contributed to

its wide use in solving problems involving spacecraft in low-to-high earth orbit. It has also been

used to develop new physical models for gas–surface interactions and intermolecular collisions as

well as discrete particle computational techniques. Section 1.1 gives an introduction to DSMC in

the context of motivations and top-level implementation details.

Bird’s collection of DSMC codes has served as a standard for some time. His original demon-

stration codes [3] still serve as reasonable benchmarking tools, as do his “production” codes DS2V

and DS3V. A number of codes have been developed to rival Bird’s originals, each offering its own

improvements upon the method. Some of these include MONACO by Dietrich and Boyd [19], DAC

by NASA [42] and dsmcFOAM (part of the openFOAM open source CFD suite of software) by

Scanlon et al. [62]. Many other codes have been developed but have less presence in the literature

either due to propriety or being similar to and derived from the available codes. Each also presents

its own set of challenges when using it for research. Some provide an interface that may not suit

one’s particular needs. Others may not contain sufficient capability to model certain physics such

as gas-surface interactions, internal molecular energy modes or complex geometries. In order to

have complete control and understanding of a DSMC code, one was written using Bird’s test codes

as an example and then extending their core concepts to create a more full-featured product. The
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code, named Voldipar, was designed with the easy injection of new surface reflection models in

mind. Its other specific features and methods will be discussed in Section 1.2.

1.1 A Review of the Motivations and Basic Principles of DSMC

DSMC is a method involving the phenomenological simulation of a finite set of discrete par-

ticles, each representing a large number FN of physical particles in a system that evolves stochas-

tically. The key to describing the motivation behind the development and usage of DSMC is in

noting that it is “direct simulation”. This means that DSMC does not attempt to approximate the

Boltzmann equation (Equation 1.1) but rather provide an acceptable modeling of it through the

imposition of a system of discrete particles that evolve according to first principles.

∂(nf)
∂t

+ c · ∂(nf)
∂r

+ F · ∂(nf)
∂c

= Ω(f, f∗, f1, f
∗
1 , n, cr) (1.1)

Ω(f, f∗, f1, f
∗
1 , n, cr) =

∞∫
−∞

4π∫
0

n2(f∗f∗1 − ff1)crσdαdc1 (1.2)

The Boltzmann equation is a partial differential equation in the variables n (number density) and f

(velocity distribution function) with two three-dimensional independent variables c (velocity) and r

(position). The large size of the independent variable space makes any discretization of the equation

in 3D rather intractable. However, what presents more of an obstacle is the collision integral Ω,

for which few approximations can be easily made for general cases. The collision integral is the

driving element of the Boltzmann equation. It models the process by which molecular collisions

of molecules in different velocity classes change the particle velocity distribution f ; where f is the

distribution of particles in velocity class c prior to collision and f1 is the distribution of particles in

velocity class c1 prior to collision. The post-collisional distributions f∗ and f∗1 are the values of the

distribution function for particles in post-collisional velocity classes c∗ and c∗1, respectively. The

variable cr is the collisional relative speed and σ is the collision cross-section. It relatively unclear

how to model the collision integral or operator for the reasons that it contains the mechanism for

utilizing inverse collisions–something that is purely mathematical–and that the elements of it (e.g.
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the distributions) are difficult to define for general cases. 1 The presence of an operator, the

elements of which are effectively unknown, prevents any traditional discretization method from

being implemented in any clear way. Approximations for the integral under specific assumptions

may be derived, however, given a molecular collision potential function [66].

Thus, using the Boltzmann equation to simulate a discrete particle model of fluids proves

difficult. Nevertheless, the equation itself remains a complicated way to represent what is essentially

a simple process. Discrete particles still obey the laws of nature, and most of the modeling of

individual particles interacting with each other and with their environment can be very accurately

described using classical mechanics. It is this principle that defines the field of molecular dynamics.

However, in molecular dynamics, relatively few particles are used, and often in the context of

studying the physical details of their interactions (e.g. modeling chemical reactions) rather than in

that of an engineering simulation of a large system (e.g. flow over a body in a fluid or aerodynamics).

Since the latter context is what had been lacking prior to the development of DSMC, Bird’s work

sought to create a practical solution to solve engineering problems that would otherwise require the

solution of the Boltzmann equation. The result of his work became a method, DSMC, which utilizes

some clever means of averaging, application of a Chapman-Enskog expansion and a “small” sample

of simulated particles. A direct simulation of this sort can be said to have three key requirements:

(1) A way to decouple collisions from advective motion

(2) A way to determine how many collisions should occur and when

(3) Ways to model

• Binary collisions

• Molecule translation

• Internal modes (e.g. vibrational, electrical, quantum)

• Surface interactions
1 The collision integral is often deemed an operator as it acts on the distribution functions to change them.

In Lattice-Boltzmann Methods (LBM) [69, 13, 41], various types of collision operators are chosen and studied, for
example.
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1.1.1 Decoupling Collisions and Advection

The first assumption that must be made to decouple the processes of collision and advection

is that all collisions are binary; the dilute gas assumption. The next is that there is often a disparity

in time scales between the two processes. If only two molecules are allowed to collide at a time, and

the time interval over which this collision occurs is typically an order of magnitude smaller than

the time required for any molecule in the system to traverse the distance to its next collision, then

the Chapman-Enskog expansion [12] can be used to formally describe the separation of time scales

as

f = f (0) + εf (1) + ε2f (2) +O(ε3) (1.3)

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
+O(ε3) (1.4)

Equation 1.3 represents an expansion of the distribution function in terms of perturbations of

the Maxwellian equilibrium f (0) and ε ≈ Kn. Equation 1.4 is an expansion of a time derivative

(suitable for transforming the Boltzmann equation) which separates it into a collision time, t2 and

advective time t1. These equations are not explicitly required for the implementation of any DSMC

algorithm. They merely show that a mathematical description of the desired decoupling exists.

In LBM, however, they do explicitly appear and are used to manipulate the derivations of that

method in order to prove its relation to the Euler and Navier-Stokes equations. The result of this

apparent ability to decouple movement is that an algorithm consisting of two to three distinct parts

emerges. They are

(1) Movement

(2) Collision

(3) Entry (possibly, may be incorporated)

Each of these steps occurs at each iteration of a DSMC simulation’s main time loop. The reason

the entry step is not necessarily distinct is that many authors choose to incorporate it into the

movement step, thus somewhat obscuring its implementation. The calculation of a proper scheme
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that models entering particles in a particular simulation can be nontrivial, however. Given the

physical importance of performing entry correctly, it is fully enumerated here as its own distinct

step. These three steps appear in all DSMC codes as well as in LBM codes, as LBM is a natural and

conceptual analog of DSMC. In addition to the core three steps, a sampling step is often performed

to calculate and output macroscopic field and surface values. This process is not physically imper-

ative to the execution of the DSMC evolution itself, so it isn’t considered to be a core algorithm

element. It is true, however, that many gas physical models, such as energy redistribution or sur-

face reflection models, may rely on macroscopic variables in real time (e.g. temperature, density).

Thus sampling, while not part of the basic DSMC evolution, is almost always performed (if only

to extract meaningful output data, an obvious desired result of the simulation). These core steps

are shown in the source of Bird’s DSMC2 test code and in a debug build of Voldipar, for comparison

in Figure 1.1.

1.1.2 Collision Mechanics and Details

Following from the identification of the DSMC core algorithm, and noting that the movement

step is largely trivial (physically, but often not practically), the necessary information regarding col-

lisions must be known in order to perform the collision step. This information includes: how many

collisions occur and where, between what molecules and what is the mechanism of colliding. There

are a number of approaches to answering these questions. To determine where, and subsequently,

how many collisions occur, the domain of interest must be divided into finite volumes or cells.

The reason for this is actually two-fold: discretizing the domain into smaller subsections (cells) is

necessary to provide output results in the fluid field and discrete volumes are required to isolate

potential collision partners from others that may be in a completely different location in the do-

main, and thus highly unlikely to collide. Although much effort has been expended by Bird [4, 5, 2]

and others [40, 60, 70] in studying collision models and improving practical collision procedures,

a useful and relevant model for performing collisions begins with Bird’s No-Time-Counter (NTC)
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Figure 1.1: A comparison of two DSMC codes’ implementations of the core elements of DSMC as
they are called from within time loops. Note that Bird’s DSMC2 test code does not explicitly include
the entry step in the main loop.

procedure for determining how many collisions occur in a given cell.

Npq =
1

2Vc
NpN̄qFN [(σT cr)max]pq∆t (1.5)

Equation 1.5 (which is Equation 11.5 in Bird’s text [3]) gives the maximum number of collisions

likely to occur in a cell of constant volume Vc over the constant time interval ∆t between two

particle species p and q where Np is the number of particles of species p in the cell, N̄q is the mean

number of particles of species q in the cell, [(σT cr)max]pq is the maximum value of the collision

cross–section product in the cell thus far in the simulation and FN is the ratio of real molecules

to simulated molecules. Using this equation, the number of possible collisions is determined, and

then collisions are attempted via one of any number of selection methods. Thus, the NTC method
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can be summarized with the following procedure:

(1) For each combination of p and q, calculate Npq using Equation 1.5.

(2) Select a molecule of species p at random from the cell.

(3) Select, via some appropriate method, a “close” collision partner of species q.

(4) Calculate σT cr for the possible collision p↔q, with cr being the relative speed between the

two possible partners.

(5) Compare: σT cr

[(σT cr)max]pq
> Rf , Rf ∈ [0..1)? If so, the collision occurs.

(6) Perform the collision by choosing at least post-collision velocities, and likely post-collision

energies.

Step 3, collision partner selection, is one of the most discussed topics amongst practitioners of

DSMC. The most obvious way to select a collision partner is to simply select a random particle in

the same cell of species q. Since a cell should be considered the smallest unit of domain space in

the simulation, this method can be acceptable. However, it has been noticed [48] that choosing in

this manor can cause the destruction of intracell gradients that would otherwise have been resolved

had closer collision partners been selected. Much of the difficulty in designing a collision selection

procedure involves balancing the inherent need in DSMC to minimize the mean collision distance

between colliding particles and maximizing performance. This leads to the often–referenced Nearest

Neighbor method, which is simply selecting the closest (via euclidean distance) particle of the

appropriate species. In order to determine which particle is the exact closest, however, all particles

of species q in the cell must be searched, and their distances from the initial particle p must be

be calculated, an O(N2
q ) procedure. This often proves much too computationally expensive for

practical implementation; thus linear or better selection methods are preferred.

The method that strikes an appropriate balance between Nearest Neighbor and cell-random

selection is subcell selection. The cell is divided into a number of discrete subdivisions or subcells
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partner (species q)
subcell−selected

but not selected
actual nearest neighbor

Figure 1.2: A DSMC collision cell of volume Vc with multiple species present and divided into
subcells for selection.

(the geometry of which remains yet again another matter of debate) as shown in Figure 1.2. The

initial particle’s current subcell is checked first to see if any particles of species q exist within it.

If so, one of those particles is selected at random. If not, some outward search algorithm selects

the “next” subcell (e.g. using an outward spiral search) and that subcell is checked for at least one

particle of species q being present, and so on until a suitable partner is found. Also, if the collision

is intended to be a p↔p or q↔q collision, care is taken to avoid colliding the initial particle with

itself. This selection method is linear in Nq but may not always select the exact closest particle

(Figure 1.2 shows this event occurring, for example). As the subcells represent an even finer division

of domain space, a good choice of subcell size and geometry serves to preserve the intracell qualities

such as gradients (or even vorticity) and keep the mean collision separation distance adequately low

for physically realistic collision modeling. Although there have been various attempts at modifying

this procedure such as using pseudo-subcells[45], the underlying essence is similar to the method

described in general here.
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Finally, once the collision partners have been selected, the collision is calculated. This entails,

at the very least, generation of post-collisional velocities for each particle. Additional modeling of

internal modes may occur, such as rotational and vibrational energy re-distribution or treatment of

electrical and quantum modes. Chemical reactions can also occur, possibly creating new species or

removing currently active species. All of these considerations fall under the category of modeling

binary collisions, the third overall requirement of DSMC. The most important aspect of a collision

to remember, however, is that the quantity of each particle that never changes due to colliding is

its position. The decoupling of collisions and advective motion prevent this from occurring, thus

enforcing a collision to occur instantaneously. And despite the definition of a collision time scale

(which is necessary to compute Npq), molecule movement still remains a separate core step of the

DSMC algorithm 2 .

1.2 The Voldipar DSMC Code

Voldipar is a new DSMC code has been created that will provide the means of performing

simulations to the exact specifications required to investigate new or different physical models of gas-

surface interactions, internal modes and other details of gas dynamics, particularly as they pertain

to engineering problems. The development of DSMC as a method itself will also be examined. This

effort includes implementation of new geometry models and performance alterations stemming from

the algorithms that drive the smaller elements of DSMC.

Much of the code remains to be written. As of this time, only 2D geometry modeling is

available. The smaller models of DSMC, such as binary collisions, surface interactions, chemical

reactions and additional internal mode modeling are limited to a set of basics for each. The

Hard Sphere (HS), Variable Hard Sphere (VHS) and Variable Soft Sphere (VSS) binary collision

models are included. Rotational energy re-distribution according to the Larsen-Borgnakke model
2 Variable-adaptive time steps allow collisions to consume the simulation time in an appropriate way, thus moving

back to a kind of adapted Time-Counter (TC) method. However, the times of each cell and particle are kept as
separately evolving quantities, independent from each other and from a baseline or reference time maintained by the
simulation. So collision and motion are still decoupled.
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is implemented. No chemical reactions are possible. Surface interactions are limited to specular

and standard Maxwellian diffuse, however plans to include more surface models are of priority (see

Chapter 2). Finally, one advanced feature (introduced briefly by Bird in Ref. [5]) is the optional

use of variable-adaptive time steps, which can increase computation performance by an order of

magnitude.

1.2.1 Geometry Model

Similar to how Bird’s DS2V and DS3V codes contain their own geometry models and procedures

for generating necessary geometric information from user inputs, Voldipar contains its own geometry

model that takes simple coordinate data as an input in 2D and will take standard triangle surface

data as input in 3D. From these data, a volumetric representation of internal, closed boundaries

is constructed by means of voxelization. A voxel is the generalized analog of a pixel–the smallest

geometric element of a 2D image (In 2D, this is termed rasterization). Usage of pixel or voxel

discretizations of space stems from the field of computer graphics and imaging where approximating

a real surface or volume is necessary in scan-conversion [35], such as in medical imaging and in

collision detection scenarios very often present in games [29]. The latter case clearly relates to

DSMC as particles are required to collide with body geometry. A conservative voxelization [28, 75],

which is a discretization of an object in volumetric space such as to allow a topologically closed

subset of the space (as voxels), is ideal for implementing a collision detection system via discrete ray-

tracing [74]. Volumetric geometry has the advantages of being conceptually simple to implement

and fast when collision detection is being performed.

It is worth mentioning that Bird’s geometry and collision detection models are somewhat

volume-based but are complicated to implement. They require setting of levels or regions extending

from a surface in order to facilitate fast collision detection. The extension of Bird’s methods from

2D to 3D is also significantly more arduous to implement. In contrast, standard voxel methods

and their associated discrete ray-tracing techniques are well-covered in available literature and can

scale well from 2D to 3D, both in terms of performance and implementation complexity. The
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disadvantage is primarily that non-uniform voxel sizes are generally not permitted as much of the

practical performance benefits that arise from volumetric techniques degrades when uniformity is

not enforced 3 .

Collisions are determined by performing a discrete ray-trace. At the beginning of its move

step, a DSMC particle has a velocity and position. The velocity vector indicates the direction in

which the particle will move until it is stopped by a collision with a solid surface or its allowable

movement time has elapsed. With the entire domain discretized into voxels, the ray-trace is accom-

plished by voxelizing the velocity vector or ray one voxel at a time, successively along the direction

of the vector, using the conservative algorithm found in Ref. [22]. Each time a new voxel of the

ray is created, it is examined and checked for its type (the type of each voxel is set prior to the

movement step occurring and is assumed constant over the entire movement step for all particles).

If the voxel type is a not “empty” (i.e. not a surface or solid voxel), then the particle is stopped and

a collision with the associated surface of the current non-empty voxel is recorded and the appropri-

ate surface interaction procedures are performed. If the voxelization of the ray never encounters a

non-empty voxel over the entire prescribed movement time, the particle has not collided with any

surface. This procedure is illustrated in Figure 1.3. It is important to notice why the performance

of a discrete ray-trace operation is superior to classical ray-tracing (particularly in the context of

DSMC), which is often considered an extremely costly operation. Contrary to classical ray-tracing,

which must examine all objects in the domain and check for an intersection, a discrete trace is

ignorant of the contents of the space. The ray propagates one voxel at a time until it collides with

a surface or reaches its maximum length. In DSMC, as in other first-collision-only schemes (e.g.

physical movement/projectile mechanics in games), where a collision represents a physical impact

of a particle with a solid object, each particle only needs to “look” immediately ahead of its current

path as it moves (this type of trace can be termed a ray-cast since it is assumed that the ray’s

propagation can be interrupted, and once so, cannot collide with any other object). Additionally, a
3 Voxel-based methods typically assume all voxels are of the same small volume. This is one of the key charac-

teristics of “atomic” methods, which construct all larger and more complicated objects from the same set of uniform
pieces (voxels).



www.manaraa.com

22

level system like Bird’s can be implemented on top of the base ray-casting procedure to accelerate

it further, if desired.

Discrete raySurfaceSolid 

surface impact
voxel

Real ray (prior to impact)

Real ray (after impact, ignored)

1

2 3 4

5 6 7

8 9

1413

1211

(stop cast)

10

Figure 1.3: Visual illustration of a discrete ray cast in a 2D voxelized domain. The “real” ray is
defined by the particle’s velocity vector and prescribed movement time. The discrete analog of the
ray (in this case, an 8-connected line [30, 22]) is shown as a sequence of voxels that are checked as
the ray propagates (shown with sequential integers).

A voxelized domain geometry model forms the core of Voldipar and with it, allows virtually

any geometry inputs to be modeled by the code. The remaining DSMC core elements such as

binary collision modeling, particle entry and sampling are relatively unaffected by this choice.

Surface sampling represents the only problem with a voxelized domain, as it is somewhat unclear

how to associate surface voxels of internal boundaries with their original data (e.g. line segments

in 2D or triangles in 3D). There are a number of approaches to addressing the problem which is

described in Section 1.2.3.
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1.2.2 Cell Volume Calculation

DSMC’s main procedures are generally unaffected by geometry models. Some changes are

important to describe, however. Although particle tracking and surface impacts are the most

obviously affected sections of DSMC, collision procedures have some dependence as well. This

dependence stems from the requirement in virtually any collision model to know the finite volume

within which collisions are to occur (e.g. Vc in Equation 1.5). In a uniform Cartesian cell config-

uration, a voxelized domain makes determining the available or empty volume in each cell rather

straightforward if the assumption can be made that all voxel boundaries lie exactly coincident with

cell boundaries. A robust code will unfortunately not be able to enforce this requirement as it is

beneficial to provide the user the ability to specify cell resolutions and voxel resolutions separately.

Thus, the general case is that not all choices for domain cell resolution may allow for the coinci-

dence requirement to be met. Figure 1.4 shows this general case where a single arbitrarily-placed

cell BRcell BL

cell TL cell TR

voxel

L

(xc, yc)

ATRATL

ABL

(xv, yv)

ABR∆yc

∆xc

(xs, ys)

Figure 1.4: Cell volumes in 2D as divided by an arbitrary non-empty voxel that spans a set of four
adjacent cells. The voxel’s primary cell, BR, is a quadrant four cell in this example.

voxel may span up to four adjacent cells, labeled according to their positions (BL: bottom left,

BR: bottom right, TL: top left, TR: top right). The voxel is assumed to be non-empty, and thus

should remove from each of the cells a piece of available collision volume. Each cell begins with an

available empty volume of Vc = ∆xc∆yc. Each voxel is exactly square, with side length L. When



www.manaraa.com

24

a non-empty voxel is created, the volume it consumes must be distributed properly amongst the

four cells it can possibly span. To do this, the voxel’s primary cell must be identified. The primary

cell is the cell in which the voxel’s center point (xv, yv) resides. The zero-indexed indices of the

primary cell are found with simple and fast fixed-point rounding operations such as

ic = fix
(
xv

∆xc

)
(1.6)

jc = fix
(
yv

∆yc

)
Next, the primary cell’s relation to the other three must be determined. At this point, the only

information available is what the voxel’s primary cell is. And since all four cells may require

a volume adjustment from this voxel, the indices of the remaining three must be known. The

displacement vector between the primary cell’s center, (xc, yc), and the voxel center is found as

dcx = xc − xv (1.7)

dcy = yc − yv

A quadrant test is performed on the displacement vector. In the example of Figure 1.4, the primary

cell is a quadrant four cell. The cell intersection point (xs, ys) is then used to determine the volumes

(areas in 2D) of each of the sub-regions of the voxel. In the example, ABL = (L/2−∆xs)(L/2−∆ys)

where, for this particular case of a quadrant four primary cell: ∆xs = xv − xs, ∆ys = yv − ys. For

different quadrant primary cells, these definitions require specific sign inversions.

Each sub-area is then subtracted from its respective cell’s current area and the process is

repeated for the next non-empty voxel that is created. Eventually, cells that intersect internal

boundary surface geometry have proportionally less available volume with which to calculate col-

lisions and cells contained entirely within a closed boundary (i.e. completely “solid” cells–those

that are completely covered by non-empty voxels) have an available volume of zero. The result of

volume-adjustment is shown for an example airfoil body in Figure 1.5. Upon performing collisions,

a cell is first checked to see if its available volume is zero and if so, no collisions are considered

for that cell. This volume distribution procedure is performed during domain voxelization. Thus,
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Figure 1.5: Cell volumes after adjustment from non-empty voxel occupation for an airfoil. Darker
regions indicate cells with more filled volume. Top: full body. Bottom: leading edge zoom.

any time the domain is re-voxelized (something that should only occur for moving boundaries), cell

volumes must be updated this way as well.

1.2.3 Voxel–Boundary Sampling

A voxelized representation of real source geometry presents a problem when surfaces are

considered for sampling. Since surface impacts are determined by a discrete ray propagation into

(and actually on top of) a surface voxel, the number of particles that have impacted a given surface

can only be tracked per-voxel of that surface. Thus, converting a surface that originally is defined

as a sequence of 2D line segments between points or 3D triangles to a set of connected voxels means
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the original length or area of the surface elements (be they line segments or triangles) is lost, and

thus unavailable when calculating surface properties.

One initial approach to solving this problem is to enforce surface sampling per-voxel. Each

surface then has as many sampling locations as their are surface voxels that comprise it. Therefore,

as voxel resolution increases, sample resolution does so as well. As for the matter of what surface

area to use, a few methods can be applied. The first, as shown in Figure 1.6a, takes each surface

real surface

eff. surface

1

2

3Le2

Le1

Le3

(a) Method 1: Effective areas Le of
each voxel in the surface.

real surface

eff. surface

1

possible inc. particle

3
3

2

2

1

2

3

Le1

Le2

Le3

(b) Method 2: Effective areas Le of each voxel in
the surface.

Figure 1.6: Two methods for determining surface sampling area per voxel in 2D.

voxel’s exposed sides and sums them to form a total effective area Le. In this example, the total

effective area of the surface–the sum of all voxels’ effective areas–is much greater than the actual

area. For any non-co-linear boundaries (i.e. general boundaries) such as the curved surface of the

cylinder in Section 1.2.6.2, this method is ineffective as it very rarely calculates accurate sampling

areas. The second method, shown in Figure 1.6b, attempts to accurately project the real surface

segment onto each voxel, cutting it at each’s limits. Thus, in this method, each voxel has an

effective area such that when summed, the total surface segment’s effective area is much closer to

the original data. There is a problem with this method as well, however. Although each surface
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voxel’s effective area may be an acceptable approximation, the number of particles that impact each

is still dependent on the exposed area of each. The arrows in Figure 1.6b illustrate how surface

voxels 2 and 3 each have two possible sides at which rays may impact, while voxel 1 only has one

side. This construction naturally skews the tracking of particles that hit the surface as some voxels

will always have more exposed sides than others. Since the goal is to determine when a particle

impacts a surface segment, the original surface segment will use the new, better effective area, but

will be counting too many particles has having impacted it. In the example of Figure 1.6b, voxel 2

has a very small effective area, but a high probability of receiving incident particles due to having

two exposed sides, while voxel 2 has a large effective area and only one side from which to receive

particles.

An acceptable solution to these problems involves a smoothing of the surface voxels over their

original boundary data and associating each original segment with a set of voxels that represent

the discretized version of itself, in surface voxels. In this method, each original boundary segment

is given an effective area rather than each surface voxel. This effective area is determined by noting

what the first and final surface voxels that have been associated with a given boundary are and then

calculating the greatest distance between any of the vertices of both of these voxels. Figure 1.7

seg 3

seg 4

seg 2

seg 1

seg 1 surface voxels
seg 2 surface voxels
seg 3 surface voxels
seg 4 surface voxels

real boundary segment
eff. boundary length

direction
sweep

Le1

Le2

Le4

Le3

Figure 1.7: Method 3 algorithm results showing four boundary segments, their voxelized represen-
tations and sampling effective areas Le.
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illustrates the result of applying this method to a sample set of boundary segments that have been

voxelized. The algorithm can be summarized as follows:

(1) Voxelize all boundaries while allowing original boundary segments to posses a unique list

of surface voxels that represent them.

(2) Calculate Le per original boundary segment as the distance between the most extreme

vertices of all voxels associated with the segment.

(3) When a particle hits a voxel, add the particle to the voxel’s associated original parent

boundary segment, forming the total sum of impacted particles to that segment.

(4) Use each boundary segment’s own Le when calculating final sampled flux and variables.

(5) Clear each segment’s impacted particle list each time a new sample period is started.

Note that there is a sweep direction indicated. This is required to enforce the necessity of each

surface voxel to have exactly one parent boundary segment, thus making each segment’s list of

children surface voxels unique so as to avoid double-counting particles that impact near interfaces

between segments. The endpoints of each segment may lie in different surface voxels because of

this, but the smoothing effect of the algorithm’s choice of effective lengths means this is not a

problem. For example, the endpoint of segment 1, in the sweep direction, lies inside a surface voxel

associated with segment 2. Originally, when segment 1 was voxelized, the aforementioned surface

voxel belonged to segment 1 as its final surface voxel, but once segment 2 started voxelization, the

voxel was claimed by segment 2 and removed from segment 1’s list, making the surface voxel shown

in the figure the true final voxel of segment 1.

A final refinement in this method is desirable. For boundaries such as segment 2 in Figure 1.7

that contain entirely co-linear voxels, Le will be calculated as being higher than is necessary as

the algorithm will draw a diagonal between the most extreme vertices of the segment’s surface

voxels. Thus, before calculating Le, the segment’s set of surface voxels should be classified as one

of the four types illustrated in Figure 1.8. Each set of surface voxels that has been assigned to a
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first voxel of segment
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ideal eff. area

F

L

exposed side(s) of first or last voxel

normal 2normal 1 simple split−simple

F

L

Figure 1.8: Method 3: identifying surface voxel set types per boundary segment so as to allow for
refinement of the method.

boundary can be identified as either of these types by noting whether the first and final (or “last”,

as in the figure) are co-linear or not, and then noting how many exposed sides each has. If they

are co-linear and both first and final voxels have different numbers of exposed sides then the set is

of type normal 1 or normal 2. If they are co-linear, each with one exposed side, the set is simple.

Finally, if they are not co-linear and each has only one exposed side, the set is split-simple. The

reason for the definition of split-simple sets is because only checking for number of exposed sides

and not for co-linearity would mark a split-simple as just simple. If a set is simple (i.e. not normal

1, normal 2 or split-simple), Le is calculated as shown, rather than the corner-to-corner distance

that the algorithm would otherwise use.

This smoothed voxel area method alleviates the problems in the first two methods and is used

in the current version of Voldipar. Because real distances are used, the problem of method 1 is

avoided. Because surface sampling is tracked per original boundary segment, rather than per voxel,
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the problem of uneven particle tracking of method 2 is mostly avoided, though it is not perfect.

One final consideration of the smoothed voxel method is that it is actually possible to return

to a perfect boundary sampling system using its natural narrowing of boundary candidates. If

all surface voxels are uniquely associated with a boundary segment, then upon impact with any

surface voxel, the discrete ray cast can hand over control to a secondary algorithm which can then

efficiently check for exact geometric intersections with the voxel’s parent boundary. Since a surface

voxel can be originally associated with a different boundary segment, as described earlier, impacts

near boundary segment interfaces would require both possible segments to be examined for ge-

ometric impact. This only adds one additional check to perform, which is minimal overhead to

endure. However, in the current 2D-only version of Voldipar it is unclear whether perfect bound-

ary sampling will create any serious improvement in accuracy, particularly since increasing voxel

resolution naturally improves the creation of discrete surface voxels as boundaries. Additionally,

although there is minimal algorithmic overhead that is required, molecule movement and surface

impact calculations represent roughly one third to one half of DSMC computational effort. Adding

more complication is undesirable unless obvious benefit is likely. It is for this reason that exact

boundary sampling has not yet been implemented in Voldipar.

1.2.4 Variable–Adaptive Time Steps

One element of efficient DSMC that both Voldipar and Bird’s series of advanced codes (e.g.

DS2V and DS3V) share is the inclusion of an automatically adjustable variable time step. This

concept is introduced very briefly by Bird in Ref. [5] but is not discussed in detail. A complete

explanation of the theory and usage of variable–adaptive time–stepping, as it is implemented in

Voldipar, is provided in this section in order to provide some needed clarification.

Not all locations in the domain of a DSMC simulation will (generally) have the same collision

rate. This implies that the mean collision time for any given cell is not only not identical to, but

may be drastically different from another cell. Consider the simple example given in Figure 1.9.

The cells closer to the object will likely have higher mean collision frequencies than cells far from
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the object, i.e. ν1 ≈ ν2 À ν9. This, of course, implies that mean collision times for these cells are

related as: ∆tcol,1 ≈ ∆tcol,2 ¿ ∆tcol,9. Another way to describe this occurrence is to say that the

cells with lower collision rates will, for the same amount of time, calculate fewer collisions than

those with higher rates. Thus, if a constant time step ∆tflow is used in Equation 1.5 for ∆t, the

less dense cells will needlessly be computing collisions. To avoid the unnecessary computation of

7 8 9

54 6

3

2
1

Figure 1.9: A simple example DSMC domain with nine collision cells and a solid object with which
particles collide.

collisions in cells where said collisions do not occur as often as other, more dense cells, the time

variable ∆tflow, as used in Equation 1.5, can be replaced with a characteristic time step unique to

each cell that is a function of the mean collision time in that cell, or, in the case of free-molecular

flow, some estimate for mean transit time of particle across the cell. Equation 1.5 becomes unique

to each cell as

N ′
pq =

1
2
NpNq (σT cr)pq,max

∆tc
Vc

(1.8)

where the cell’s characteristic time is

∆tc = min
(
∆tcol, ∆ttr

)
(1.9)

The mean cell transit time, ∆ttr can be determined a number of ways but is primarily just an

approximation based on characteristic cell geometry and mean macroscopic velocity in the cell.
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In the case of zero macroscopic velocity in all directions (i.e. a stationary gas) that is not free-

molecular, the minimum thermal velocity component can be used. The cell’s mean collision time

is more specifically obtained. At any given time in the simulation after initialization, a cell’s mean

collision time can be determined by using any of three methods.

Method 1: Scale the current sample interval.

Scale the most recent sample interval ∆ts by the ratio of the mean number of particles in the cell

over the sample (N) to the number of particles of the sample that have experienced at collision

(2Ncol).

∆tcol =
N∆ts
2Ncol

(1.10)

One caveat to using Equation 1.10 to determine mean collision times is that it is inaccurate when

N and Ncol are sampled with low fidelity. Sampling over more main loop iterations will reduce the

statistical scatter in these variables, causing more realistic “measurements” of them, rather than

highly varying instantaneous values. However it may still be undesirable to require that ∆tcol rely

on the sample interval directly as it should remain as separate from the physics of the problem as

possible.

Method 2: Use the most obvious definition of mean collision time.

Mean collision time in a cell is the reciprocal of the mean collision frequency ν, so a similar equation

to Method 1 would be

∆tcol =
1
ν

=
∆ts
Ncol

(1.11)

This definition gives mean collision times that are close to but still slightly smaller on average than

Equation 1.10.

Method 3: Use the general form of ν to augment Method 2’s definition.

The collision frequency can be written as

ν = n(σT cr) (1.12)

meaning the mean collision time is

∆tcol =
1

(σT cr)
(1.13)
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In a DSMC algorithm, the collision cross-section σT cr of each possible collision is necessarily com-

puted during the collision step. Since it is already available, it is a simple matter to track its mean

value σT cr per cell over the sample interval. The number density n is determined using information

that is already readily available as

n = N/V (1.14)

where V is the cell volume. Note that the macroscopic number density may be zero in the event

that N is zero. This can occur if particles leave the cell over the sample without new particles

entering before the calculation of ∆tc takes place. If N is zero, the cell should retain its current

mean collision time rather than attempting to re-calculate it, as the cell has not gained enough new

information to warrant a change.

At the initial stage of a simulation (i.e. at tf = 0, where tf is the absolute overall simulation

flow time), ∆tcol can be determined as a function of the domain’s initial characteristics, vis

∆t(0)
col =

[∑
p

frpν
(0)
p

]−1

(1.15)

ν(0)
p =

∑
q

2
√
πd2

ref,pqnfrq

(
Ti

Tref,pq

)1−ωpq
(

2kTref,pq

m̄pq

) 1
2

(1.16)

where frp|q is the fraction of species p or q, T and n are the cell’s macroscopic overall temperature

and number density, respectively, k is Boltzmann’s constant, and the rest are species p−q reference

data. Equation 1.16 is a form of Equation 4.64 from Ref. [3].

The overall flow time step now must be updated at every sampling operation. Each time the

domain is sampled, Equation 1.8 is evaluated and stored for each cell. The overall flow time step

would ideally be calculated as

∆tf = min∆tc (1.17)

where min is taken over all cells. However in practical application, taking the actual minimum over

all cells may result in excessively small time steps due to fluctuations in cells’ information. Some

cells may possess poor information (e.g. cells immediately behind a body, in the highly rarefied

wake where few particles exist at any given instant) which may yield a mean characteristic time
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that is “artificially” very small or large. As a concession of pragmatism, the flow time may be

instead calculated as

∆tf =
∆tc
γt

=
∑

i(∆tc,i)
Nvγt

(1.18)

where ∆tc is the mean characteristic time of the entire domain calculated by only including cells

whose information was valid over the sample interval (i.e. whose δtc was not zero or infinity). The

right-hand-side of Equation 1.18 sums times over all valid cells i and divides by the total number

of valid cells Nv to obtain this specific mean value of characteristic time in the domain. Naturally,

this time would be too large for some cells. A scale factor γt is included to reduce the mean time.

This factor becomes a tuning parameter of the algorithm that must be specified by the user. A

smaller value of γt gives larger flow time steps, but also higher collision and movement fractions (the

fraction of cells that actually perform collisions and particles that actually are moved per sample

interval).

To examine the effect of changing γt, computations of steady flow over the NACA-0012 airfoil

in Kn =0.01 Ma =28.40 in molecular Nitrogen (see Section 1.2.7) were performed at various values

of γt. These results, which compare overall drag force, are given in Table 1.1. Using Equation 1.18

Table 1.1: Effect of scale factor γt on flow time step calculation and overall drag of an airfoil section
in DSMC (% collide/move are rough averages occurring at steady-state).

γt Drag [N] ∆tf,min [s] ∆tf,max [s] % collide % move run time [s]
3.0 38.30 3.87× 10−7 4.36× 10−7 30.1 35.1 1432
5.0 38.14 2.33× 10−7 2.65× 10−7 18.6 22.0 1787
7.0 38.06 1.66× 10−7 1.92× 10−7 13.4 16.1 2098
9.0 38.08 1.29× 10−7 1.50× 10−7 10.4 12.7 2360
11.0 38.06 1.05× 10−7 1.23× 10−7 8.6 10.5 2634
13.0 38.10 8.91× 10−8 1.05× 10−7 7.3 9.0 2881
15.0 38.04 7.73× 10−8 9.08× 10−8 6.3 7.8 3127
17.0 38.10 6.81× 10−8 8.04× 10−8 5.6 6.9 3390

with an adjustable γt does not ensure that the overall flow time is advanced at a resolution higher

than the smallest characteristic time; which is a requirement for proper DSMC collision-advection

process decoupling. However, choosing a low enough γt will often yield acceptable results for many
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common problems. The airfoil example in Table 1.1 is representative of many similar external flow

problems. Acceptable results are often obtained with γt ≥ 5, with diminishing returns in accuracy

past γt = 15; however, the user’s specific requirements for a balance of accuracy and performance

will ultimately decide the value of γt.

The flow time step will be used until the end of the next sample interval when it is re-

calculated. Each iteration of the simulation’s evolution contains collision and movement procedures.

Thus, each cell and each molecule must now store its own absolute flow time. At each iteration of

collision, each cell compares its flow time to the overall flow time. If the cell’s flow time is less than

the current overall flow time, collisions for that cell are calculated using the characteristic time for

that cell, given by Equation 1.9. The flow time for the cell is then advanced by its characteristic

time ∆tc.

Similarly to how collision cells are asynchronously advanced through time only when necessary

to be physically consistent, individual molecules should be advanced based on where they are in

the domain. Each time a molecule is considered for movement, its flow time is compared to the

overall flow time. If the molecule’s flow time has lagged behind the overall flow time, the molecule

is moved a distance that is determined from its current velocity and the characteristic time of

the cell in which it currently resides at the beginning of the movement step. This requires the

simulation to be capable of quickly and efficiently determining a given molecule’s current cell.

There may be problems in performance with this requirement, however they are mitigated by

various programmatic design methods that won’t be discussed here.

As a means of providing additional clarification of the variable-adaptive time advancement

method, a detailed example is given that is based on the domain of Figure 1.9. The safety factor αt

is included to slow time advancement by a slight amount in order to ensure that cell and molecule

time advancement don’t occur faster than they should. Artificially (somewhat arbitrary but mildly

consistent with the domain and its inclusion of a solid object) selected cell characteristic times are

given in Table 1.2 for a set of consecutive samples, starting at tf = 0. If the number of overall

flow time steps per sample Nsam = 5, then Figure 1.10 gives a visual representation of the various
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Table 1.2: Example domain cell characteristic times over four consecutive samples starting at tf = 0,
with αt = 0.5. The first column, ∆t(0)

c , would be the times calculated from the initial domain state,
using Equation 1.15. Superscripts denote the sample number. Times are dimensionless.

Cell ∆t(0)
c ∆t(1)

c ∆t(2)
c ∆t(3)

c

1 0.20 0.10 0.30 0.20
2 0.40 0.30 0.30 0.20
3 1.00 0.90 0.80 0.80
4 0.50 0.70 0.70 0.70
5 0.70 0.70 0.80 0.70
6 1.00 1.10 1.00 1.10
7 1.40 1.50 1.60 1.50
8 1.80 1.90 1.80 1.80
9 2.00 2.00 2.10 2.10

∆t(0)
f ∆t(1)

f ∆t(2)
f ∆t(3)

f

0.10 0.05 0.15 0.10

timelines of the simulation as it evolves, starting at tf = 0 (the far-left points of all lines) to infinity,

over four samples. The vertical broken lines indicate a point in the simulation at which collisions

and movement are considered for all cells (i.e. each iteration of the simulation’s main loop). The

small notches along each cell’s timeline are locations of the cell’s current flow time. All cells begin

with a flow time of zero. They each have their characteristic times calculated using Equation 1.9,

which uses Equation 1.15. The initial overall flow time step ∆t(0)
f = 0.10 is determined and used

over the first sample interval, which extends for Nsam = 5 overall flow time steps (until the S(1)

location). The first time collisions and movement are considered is at tf = ∆t(0)
f , the first vertical

line. Cell 1’s current flow time at this point is zero. As zero is less than the current overall flow time,

collisions for cell 1 are performed using ∆t(0)
c,1 = 0.20 and cell 1’s current flow time is incremented

by this amount, which is where the first notch (with a numeral 1 adjacent to it) is on its line. This

procedure is repeated for the remaining cells. As they all are synchronized at zero initially, they all

have collisions performed and their flow times advanced to the next notch. The cells with longer

characteristic times have their times advanced much more than the those with smaller characteristic

times, as can be seen by noting how far down their respective timelines their first notches are. As
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the next iteration comes, all cells are once again considered for collision. Cell 1’s current flow time

is still at notch 1 (0.20), and as the overall flow time of this, the second, iteration is 0.20, the cell’s

time is equal (i.e. not strictly greater, but this is a detail of implementation) to the overall flow

time. Thus, collisions are not performed and cell 1’s time is not advanced. Cell 2’s current flow

time is at its notch 1, which is at 0.40, which is well beyond the overall flow time, so it is also

skipped; as are the remaining cells at this iteration. At the third iteration, cell 1’s current time

(0.20, notch 1) is now lagging behind the flow time (0.30), so collisions are performed and its time

is advanced to notch 2. At the fourth iteration, cell 1 and cell 2 have times equal to the flow time

and are therefore skipped, as are the remaining cells in the example. At the fifth and final iteration

of this sample interval, tf = 0.50 and cells 1 and 2 are updated, with others skipped. Immediately

after collisions and movement are performed for this iteration, the first domain sampling occurs

(S(1)). It is important to note that this event occurs after the collision and movement steps as new

characteristic times and thus, overall flow time steps are calculated when sampling occurs. This

also implies that any collision cell updates at the final iteration of the sample interval should still

be using their ”current” time information. Recall, as well, that from now onwards, the new cell

characteristic time steps are calculated using Equation 1.9 with Equation 1.13. As soon as this

sampling occurs, all cells will be using the second column of times in Table 1.2 and the overall flow

time step is now smaller: ∆t(1)
f = 0.05. This procedure continues until the end of the simulation.

Table 1.3 provides a reduction of the process a bit further by showing which cells receive

updates at which overall flow times. The cell with the smallest characteristic time (cell 1) can

be seen to have collisions calculated 10 times, while the cells with very large mean collision times

(e.g. cells 7,8,9 etc.) only have collisions calculated once or not at all after the initial calculation

at tf = 0, and thus skip most time steps. The integers increase along each cell’s row, indicating

another update for that cell, and that the integer is where the cell’s flow time number will be at

the end of that update (e.g. cell 1 will have moved to its third flow time after the completion of

the update that occurs for it at tf = 0.50, or the fifth overall iteration).

It can be seen how much of an advantage this advancement method gives if one considers
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Table 1.3: A visual account of updates (collisions calculated and cell time advancement) in the
example problem. A filled entry indicates an update was performed on that cell at the corresponding
overall flow time. The number in the entry indicates the notch in Figure 1.10 to which the cell was
advanced at the conclusion of the collision calculation. Cells 7 and 8 can be seen to have only two
each, with cell 9 having only 1 by the end of the 20th iteration at tf = 2.0.

Cell t(1)
f t(2)

f t(3)
f t(4)

f t(5)
f t(6)

f t(7)
f t(8)

f t(9)
f t(10)

f

0.10 0.20 0.30 0.40 0.50 0.55 0.60 0.65 0.70 0.75
1 1 2 3 4 5
2 1 2
3 1
4 1 2
5 1 2
6 1
7 1
8 1
9 1

Cell t(11)
f t(12)

f t(13)
f t(14)

f t(15)
f t(16)

f t(17)
f t(18)

f t(19)
f t(20)

f

0.90 1.05 1.20 1.35 1.50 1.60 1.70 1.80 1.90 2.00
1 6 7 8 9 10
2 3 4 5 6 7
3 2 3
4 3 4
5 3
6 2
7 2
8 2
9

that the total number of updates over the entire simulation (as given in this example) would be

based off of the smallest (estimated) characteristic time, which (when multiplied by αt = 0.5)

is 0.05, and assumed constant. This would mean that there would be 40 updates for every cell,

totaling 360 updates for the 2.0 time units of evolution. With variable-adaptive time advancement,

the total number of updates is only 34, a 90% improvement. Of course, the exact performance

benefit for this method is dependent on the physical nature of the problem being solved. Domains

with uniform density everywhere would not benefit much. However, most engineering problems

of interest contain sufficient disparities within their domains that implementing variable-adaptive

time steps is likely worth the effort. For example, Bird remarks that “The average time step in
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the benchmark case is seven times the size of the minimum time step and the ratio of the largest

to the smallest step would be more than 100” [5], in reference to the cylinder benchmark case of

Section 1.2.6.2.
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1.2.5 Stream Boundary Considerations

Bird’s molecule entry model is based on usage of Equation 1.19 (Equation 4.22, from Ref. [3]),

which is the analytical result for particle flux through a surface as a function of surface temperature

and entry velocity.

β ˙Ninc

n
=

1
2
√
π

[
e−s2 cos2(θ) +

√
πs cos(θ)(1 + erf(s cos(θ)))

]
(1.19)

The angle θ is the angle between the incident velocity vector and the surface normal and s = βVin

is the molecular speed ratio, where Vin is the incident bulk speed. In the DSMC2 code (which is

used for verification of the first problem in Section 1.2.6), the stream boundary entry fluxes are

determined by imposing a kind of throughput or advective velocity on the stream boundaries. This

method may result in physically realistic results for the particular problem of a supersonic flat

plate, but some doubts may be raised about its application to general cases.

Problems arise from the imposition of an exit velocity at certain locations where flow is

assumed to exit. Similar to how outflow boundary conditions often present an ambiguity in con-

tinuum CFD methods, there is not always an appropriate choice to make for an exit velocity (or

even an exit boundary at all) in DSMC. In the case of the supersonic flat plate problem shown in

Figure 1.14, the right boundary is the assumed exit. When the entry stream boundary on the left

is considered, the angle θ in Equation 1.19 is zero (assuming the inflow velocity–a quantity that

is specified–has no vertical component) and s = βLVin,L, where βL is the reciprocal of the most

probable molecular speed using prescribed external gas conditions at the inlet (i.e. the chosen free

stream conditions). This causes the maximum possible flux through the left boundary. When the

right boundary is considered, DSMC2 calculates an inflow flux (that is, flow from the right external

region, through the right boundary and into the domain, or molecules moving to the left) across

this boundary by defining s = −βRVin,L and assuming θ is still zero. That is, either setting s to

be negative or choosing θ = π would give the same thermal backflow result in Equation 1.19. The

result of this assumption creates almost no flux into the domain from the right boundary since

Vin,L is very large in this problem.
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Ideally, however, a proper definition of a DSMC stream boundary will not be dependent on

knowledge of any prescribed or assumed flow conditions. Calculating inflow flux from an “exit”

boundary using the the inflow speed from an actual entry boundary does not model a true stream

boundary unless the external stream, beyond that boundary (in this case, outside the domain to the

right) is desired to be moving at the inlet velocity as well. If the right stream boundary is supposed

to be a static gas, then the inflow flux calculation should take into account the orientation of the

normal vector of the boundary, which defines “in” as to the left. This implies that the parameters

for the right boundary should be such that θ = 0 (always, if the velocity is entirely normal to the

boundary, and directed in with respect to that boundary) and Vin,R = 0. The latter equality is

important to enforce, as it causes s to be zero, which results in a proper static gas diffusion flux–a

quantity much higher than that which results from s < 0, as Bird imposes in the flat plate problem.

The imposition of a throughput velocity by Bird in DSMC2 is not incorrect, but simply non-

generalized. When handling a DSMC stream boundary, a general code requires the following

quantities to be defined on the boundary (or just-externally): number density, temperature and

bulk velocity4 . Any given stream boundary’s inflow flux is then determined by calculating β, then

s for the boundary, and then the entry flux from Equation 1.19, noting that θ should always be

between zero and π/2.

To simplify the prescription of stream boundary conditions, Voldipar allows stream bound-

aries to be specified in the most natural way. Each stream boundary represents an interface to an

external stream which has a bulk velocity, density and temperature. These three parameters are

given by the user and the code determines by means of an inner product rather than a direct angle

θ what the inflow normal component of velocity is. This defines the flow as simply existing outside

the domain with some naturally entering the domain through the boundary.

When considering outflow streams, a prescribed external stream velocity is applied but is not

necessarily physically accurate. Information about external stream conditions is not possessed by
4 Additionally, it is possible that the external regions may have different species composition than inside the

domain. In this case, the molecular mass and gas constant, used to calculate β must be prescribed as well.
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the simulation at the beginning of its evolution. For the flat plate problem, the imposition of an

outflow speed (and subsequent minimal backflow) is acceptable for that particular problem, but

not in general. The resulting influx across the right boundary is effectively zero, which implies a

vacuum condition would be equally acceptable at that location. In the proceeding verification of

this problem, Voldipar uses a vacuum condition when comparing with Bird’s DSMC2 code. The top

boundary’s entry flux is small, but non-trivial, and not zero. To impose the existence of a flowing

stream at the same velocity as the inlet, entry flux at the top boundary is equivalent to using

Vin,T = 0, as no bulk flow is present that crosses the boundary. This results in a flux identical to a

static gas diffusing across any boundary. Once molecules are placed into the domain just inside of

the top boundary, the free steam velocity (which is actually the user-specified top-external velocity)

is added to their thermal velocity. Future improvements in this way of specifying stream conditions

are discussed in the following section.

1.2.5.1 Improvements in Stream Conditions

The problem of lack of information about the external domain when imposing stream con-

ditions may seem similarly difficult to resolve as it is in continuum CFD. Consider the example of

the flat plate problem where the right boundary is chosen to be a static gas. This implies that

the entering flow crosses the domain and exits into an external region where there is no bulk flow.

To model this, Vin,R would be set to zero, as mentioned earlier, effectively modeling a static gas.

However, this assumption fails to account for the inevitable change in realistic boundary condi-

tions as a function of the evolution of the external environment. That is to imply that the static

gas to the right of the right boundary would no longer remain static once the bulk flow from the

domain has begun to push it rightward. This occurrence is illustrated in Figure 1.11. The static

gas stream condition at the right boundary is no longer valid once the simulation has affected the

external flow. In fact, the imposition of a negative normal inflow speed (i.e. an outflow speed)

becomes appropriate. In the initial phase of the simulation (perhaps only the first time step),

shown on the left of Figure 1.11, there is a non-zero number of molecules from the external stream
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Figure 1.11: The stream boundary condition as imposed on an assumed exit boundary will affect
the external molecules and their velocity distributions after some arbitrary (possibly steady-state)
time in the evolution of the simulation.

which pass into the domain from the external region due to thermal motion. In the later stages of

the simulation, shown on the right of Figure 1.11, very few, if any, molecules move back into the

domain. This is the thermal backflow limit phenomenon that occurs as the bulk flow increases in

magnitude. Thus, the entry fluxes for each phase of the simulation will be different. Furthermore,

DSMC’s standard procedures introduce new molecules in the domain, said to have recently crossed

the boundary, at each iteration of the simulation’s main time loop. The number of molecules is

determined from the number flux. If the static gas stream condition is maintained throughout the

simulation, a buildup of molecules just inside of the boundary occurs. Although molecules that

enter are mostly immediately knocked out again by high-Ma flows (as in the flat plate example),

more are reintroduced the very next time step. This causes the cells immediately inside a stream

boundary of a static gas to always contain, somewhat artificially, a higher density of particles than

their immediate neighbors. This increase in density can be seen in Figure 1.12. The imposition

of a static gas for all time at the exit compresses the oncoming flow, causing molecules incident

on the right boundary to be unable to easily leave the domain, as they collide with the external

region’s virtual static particles as if they were actually a “soft” or semi-permeable wall.

Consider yet another example in which this outflow uncertainty is more prevalent. In DSMC,
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Figure 1.12: Nondimensional density n/nin for imposing static gas stream conditions with Voldipar,
for all time, at the right boundary in the supersonic flat plate problem. The entering molecules
block the oncoming flow from exiting smoothly just inside the boundary.

if an internal boundary is given as a solid object, defined by a 2D surface comprised of NS points, it

is possible to define a problem in which this surface is used as a source for entering molecules. A set

of external5 boundary properties such as stream velocity, density and temperature are prescribed

on the boundary at each point (or segment) and molecules enter the domain via these locations.

Figure 1.13 illustrates this concept.

The domain boundaries are also stream conditions, meaning that they are interfaces with

a different external gas. Both the internal gas and external gas are assumed to be static at the

start of the simulation. Initially, the effusing boundary will cause the static gas in the domain to

move according to the algorithms of DSMC. However, what occurs at the domain boundaries is

unclear, and it is important to known how these boundaries’ properties should be specified. If the

typical constant stream conditions are imposed, the resulting overall result inside the domain, and

particularly close to the boundaries, will be incorrect for the aforementioned reasons relating to
5 In this case, “external” would refer to the region inside the solid boundary, as it acts as a source, which models

a hole in the domain.
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Figure 1.13: DSMC domain effusion problem. The outer domain boundaries’ properties (e.g.
velocity is shown) are unknown at the beginning of the simulation. Only the left domain boundary
is shown in detail.

Figure 1.11. Thus, the domain boundaries need to be updated as the simulation evolves in order

to reflect this effusion. If they are not, and the boundaries remain unchanged as a static gas, the

artificial “soft” boundary will again be the result.

Since a user may not wish to specify an outflowing stream condition or a constant static gas

stream condition (for the preceding reasons), some balance between the two is required. Fortunately,

DSMC allows an easy formulation of a dynamic stream boundary condition. Each time step, the

macroscopic flow (bulk) velocity just inside the boundary can be used as a distributed velocity on

the boundary. Thus, in the example of Figure 1.11, the right boundary would eventually evolve

into an outflow stream boundary. This method would also work in reverse, allowing a static

gas external to a boundary to be sucked into the domain, thus becoming a bulk-inflow or entry

stream condition. Related approaches which use information from outside the computational region

have been proposed. Lilley and Macrossan [43] described an acceptance-rejection formulation of

generating entry particles as if they were to start from external locations and diffuse into the

domain, thus providing a varying number flux of particles per time step. This method also avoids



www.manaraa.com

47

the need for velocity distribution cutoffs, allowing all possible velocities to be selected rather than

a finite region that is defined by the user.

This interpolation scheme may prove too costly to perform very often. Therefore it may be

desirable use a reduced-order model to provide some means of determining the external domain

boundary properties as a function of the prescribed inner, effusing boundary’s properties. Consider

this problem as the relation of 3NS parameters to 3ND parameters, where the factor of three comes

from the requirement of knowing velocity, temperature and number density at each point. If both

components of velocity are considered separate parameters, this factor is increased to four in 2D,

and 5 in 3D. This relation would be required to update at each time step of the simulation for

transient cases (the most general case) or could be given as a steady-state relation of the domain

(a common, but less general case). Various uncertainty quantification methods (e.g. Separated

Representation [1]) that relate a number of inputs to a different number of outputs may be useful

in this arrangement of the problem. It is worth mentioning that the “black box” that connects the

inputs (inner boundary effusion stream properties) and outputs (domain boundary properties) is

DSMC itself. Thus it involves much averaging and uncertainty in its operation anyway. But for

the purposes of such an analysis, it should still be considered deterministic.

1.2.6 Verification

Prior to using Voldipar to provide information on rarefied gas flow, a verification was per-

formed of the code in its current state. Two canonical problems were chosen, both being heavily

examined by Bird and others. The supersonic leading-edge or flat plate problem is a simple 2D

problem that requires no geometry considerations. The hypersonic round cylinder problem is an

example of non-trivial geometry in rarefied flow that verifies the code’s geometry mechanisms as

well as the overall DSMC method’s implementation. Both of these problems were computed using

Voldipar and results compared to those obtained with Bird’s DSMC2 code, and others. The DSMC2

code is not a production code, and may be considered to be obsolete. However it is still validated as

giving acceptable results by Bird (Ref. [3], Chapter 14). As its source is readily available, a proper
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direct comparison can be made. Therefore, this code was used to validate the flat plate problem.

The cylinder problem contains geometry that DSMC2 cannot handle, as that code has no internal

geometry model. That problem was compared using available computational results from Ref. [5]

and [62].

1.2.6.1 Hypersonic Leading-Edge

The supersonic flat plate problem is without any need for complicated geometry as it simply

uses a distribution of boundary conditions over one of its natural boundaries. It is constructed

by setting the domain geometry and boundary conditions as shown in Figure 1.14. The boundary

conditions of type “Stream” indicate an interface with the undisturbed free stream of gas. The

inflow

StreamS
tream

Solid (Diffuse)

Solid (Specular/Symm)

V
ac

u
u

m

Ly

Lx

x0

Vin,T = 0

Vin,L > 0

Figure 1.14: Geometry and boundary conditions of the supersonic leading edge or flat plate example
problem.

specific parameters of the problem are given in Table 1.4, where the gas in use is molecular nitrogen
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and the collision model is Variable Hard Sphere (VHS). Rotational energy re-distribution is the

only internal mode that is modeled. The lower boundary of the rectangular domain is split into two

regions. The first 10% is a solid surface using specular reflection (which is identical to a symmetry

condition). The remaining 90% is a solid surface that uses standard diffuse reflection. Thus, a

transition occurs that effectively models a flat plate with a leading edge at x0. The initial particle

distribution was determined by randomly positioning particles in cells according to the constant

number density nin, constant temperature Tin and constant initial velocity [Vin 0]. Each simulation

was run from t = 0 to t = tmax using a constant time step of ∆t, at which point steady-state had

been long-achieved, and approximately 100,000 samples had been taken. The cell sizes and spacing

in DSMC2 were set to be uniform and constant.

The first data to compare are the domain statistics. These are quantities that are tracked

in both codes as various measures of accuracy and performance, which include mean collision

separation distance and collision acceptance ratio.
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Figure 1.15: Nondimensional number density contours for the supersonic flat plate problem at tmax,
or 0.7976 s after steady state was achieved: Kn = 0.01, Main = 4.0

Field variables for each code are compared in Figures 1.15 to 1.17. Field comparisons indicate

Voldipar gives close results to DSMC2, with most of the disparity between the two being at the edges
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Figure 1.16: Nondimensional overall temperature contours for the supersonic flat plate problem at
tmax, or 0.7976 s after steady state was achieved: Kn = 0.01, Main = 4.0

of the domain. The apparent jagged edges of Figure 1.15a near the entry boundary are likely due

to the necessary oversampling that occurs due to the use of voxels as data containers, as well as due

to a per-voxel distribution of entry molecules. The latter consideration is different from DSMC2 as

in that code, the entire left boundary is considered a single surface over which entry molecules will

enter (i.e. there can be no distribution of surface properties over the boundary that would create

different entry fluxes at different locations) where as in Voldipar, the option to specify boundary

surface properties as functions of the coordinate along the surface necessitates these properties being

unique down to the level of a voxel–the smallest geometric unit allowed in the code. To validate

this assumption further, the plate surface properties were examined. Figures 1.18 to 1.21 show

comparisons of various surface quantities of interest, non-dimensionalized and scaled according to

Equations 1.20 to 1.23, where e is the natural exponential base, mg is the molecular mass and k

is Boltzmann’s constant (Coordinates are shifted such that x/λ∞ = 0 is the leading edge of the

plate.).

Nfm =
nine

2
√
πβin

, βin =
√

mg

2kTin
(1.20)
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Figure 1.17: Mach number contours for the supersonic flat plate problem at tmax, or 0.7976 s after
steady state was achieved: Kn = 0.01, Main = 4.0

Cp =
2(p− pin)
ρinV 2

in

, pin =
ρin

4β2
in

(1.21)

Cf =
2τxy

ρinV 2
in

(1.22)

Ch =
2ε

ρinV 3
in

(1.23)

Equation 1.20 is the free-molecular non-dimensional number flux based on the free stream values

of temperature and density. The remaining equations are definitions of typical aerodynamic co-

efficients, with pin being static thermal pressure and ε in Equation 1.23 being a general energy

quantity that represents either the total net energy transfer to the plate, incident translational en-

ergy, reflected translational, incident rotational or reflected translational, as shown in Figure 1.21.

There appears to be sufficient agreement between Voldipar and DSMC2 for all plate surface

variables. The only noticeable difference is at approximately seven to ten mean free paths from

the plate leading edge where Cp and number flux are slightly lower for Voldipar. Energy coeffi-

cients (Figure 1.21) are unaffected, being the most agreeable of the present surface variables in the

comparison.
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Figure 1.18: Normalized number flux to the plate surface over the steady-state sample interval.
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Figure 1.19: Pressure coefficient over the plate surface over the steady-state sample interval.



www.manaraa.com

53

Table 1.4: Supersonic flat plate problem variable values and parameters.

Description Symbol Value Unit

Mach number Ma 4.0
Knudsen number Kn 0.01
Ratio of real-to-simulated particles FN 1.75× 1015

Leading edge location x0 0.10 m
Domain length Lx 1.00 m
Domain height Ly 0.60 m
Num. cells in x Ncx 100
Num. of cells in y Ncy 100
Num. of subcells per cell (each dir.) Nsc 2
Constant time step ∆t 4.0× 10−6 s
Time to steady state (imposed) tss 0.0024 s
Time to end tmax 0.80 s
Num. time steps per sample Nsam 2
Temp. of inflow stream Tin 300 K
Temp. of solid bottom wall Tw 500 K
Inflow number density nin 1.0× 1020 m−3

Inflow speed (aligned) Vin 1412.5 m/s
Gas molecular mass mg 4.65× 10−26 kg
Gas viscosity power ω 0.74
Gas reference temp. Tref,N2 273 K
Gas reference diameter dg 4.17× 10−10 m
Gas rotational deg. of freedom ζ 2
Rotational relaxation constant Zrot 1/5
Voxel resolution (Voldipar only) nvox 160

Table 1.5: Steady-state DSMC statistics comparison (at t = tmax).

Voldipar Bird’s DSMC2
Molecules Present 37,717 37,441
Molecular Moves 7,532,560,434 7,548,037,584

Num. Pair Selections 1,226,612,705 1,223,014,573
Num. Collisions 642,814,332 641,883,494

Coll. Accept. Ratio 0.524056 0.524837
Mean Coll. Sep.[m] 0.003121 0.003267
Num. Entered Total 44,199,827 -
Num. Removed Total 44,196,424 -
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Figure 1.20: Skin friction (shear) coefficient over the plate surface over the steady-state sample
interval.
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1.2.6.2 Hypersonic Cylinder

A far more interesting problem than flow over a plate, is hypersonic flow over a solid object.

In a classic benchmark case, a round half-cylinder is placed in the domain for a high–Mach number

flow to intercept. The degree of rarefaction of the gas in this case is set rather low at Kn = 0.01 so

as to model what should be close to continuum flow. Thus, the expectations of this problem involve

the appearance of a shock region ahead of the cylinder and a recirculated zone just aft of it, the

size of which being a function of Ma 6 . Figure 1.22 gives the geometry and boundary conditions

of the problem. Specific parameters are identified in Table 1.6. A vacuum condition is used at the

right boundary once again, for similar reasoning as was presented for the flat plate problem. The

cylinder is placed with its center point at x0 downstream from the inlet where it is modeled as

a solid, diffuse wall. The remaining sections of the bottom boundary are set to be specular solid

or symmetry conditions, as the problem is geometrically symmetric about the bottom boundary.

The gas in use is atomic Argon and the collision model is Variable Hard Sphere (VHS). Rotational

energy internal modes are irrelevant for this gas as it has zero degrees of rotational freedom. The

variable-adaptive time step scheme described in Section 1.2.4 is used in Voldipar, while DS2V also

uses a type of variable time stepping that should be almost identical, with the exception of the

parameter αt which tunes Voldipar’s version.

The code used for comparison in this problem was Bird’s DS2V code. Some of the parameters

in Table 1.6 do not correspond perfectly to those in DS2V. The number of cells in each direction

is constant in Voldipar and cells are rectangular and uniformly spaced 7 . In DS2V, the collision

and sample cells are separated, and each set is non-uniform in size and spacing. Thus, the total

number of collision cells should be compared. Both are set at approximately 40,000 collision

cells. Additionally, the time to steady state and FN are quantities that are imposed in Voldipar,

but obscured in DS2V where they are implicitly determined (FN is calculated as a function of a
6 Typically this region’s qualities are a strong function of Reynolds number (Re ). However, in this highly-

compressible regime, Mach number dominates as the flow is already so strongly inertial
7 Cells in Voldipar are basically rectangular, but are adjusted to fit the geometry down to voxel resolution for the

purposes of calculating effective volume and collisions.
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Figure 1.22: Geometry and boundary conditions of the hypersonic round cylinder example problem.

user-defined amount of initial memory with arbitrary scaling and steady state is determined from

analyzing the statistical fluctuations of the total number of molecules).

Macroscopic field variables for each code are compared in Figures 1.23 to 1.25. The contours

of DS2V were created via interpolation to a uniform query grid as the code only provides field data

per cell where each cell is non-uniformly spaced and sized. The query grid’s resolution was also

of coarser quality than the cell grid for Voldipar. This is because DS2V separates sampling and

collision cells and only provided roughly 6000 sampling cells worth of field data for this example

and Voldipar’s sampling was performed at each of the 40,500 collision cells present in the domain.

Thus, DS2V’s contours appear somewhat artificially smoother. The overall quality is similar to

Voldipar’s results, however. The location, thickness and temperature profile of the the shock is

captured by both codes equally well. The recirculated region aft of the cylinder is also present

where bulk velocities are nearly zero. Density shows the greatest difference, but this is primarily

due to choice of contour scaling. Voldipar had a few cells for which number density was unnaturally
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Figure 1.23: Nondimensional number density contours for the hypersonic cylinder problem at tmax,
or 0.0015 s after steady state was achieved: Kn = 0.01, Main = 10.0 (cylinder body artificially
superimposed)

high, which is likely a slight defect due to particles getting “stuck” at a few key surface voxels.

These cells were artificially set to the highest natural nondimensional density of approximately

fifteen to allow for presentable plotting. This problem does not seem to affect the overall field or

surface results but will be examined in the future. DS2V also had some strange behavior in sampling

in that it presented very high densities inside the cylinder–a region where no cells should exist and

no particles should be present (the solid black patch that represents the cylinder body obscures

this).

Selected surface quantities are compared in Figures 1.26 and 1.27, with Cp defined as

Cp =
2p

ρinV 2
in

(1.24)

Voldipar’s voxel-boundary sampling mechanism (see Section 1.2.3) naturally introduces some

ambiguity in surface sampling operations. The scatter that is seen in both plots near the leading

side of the cylinder is likely partially due to this issue. However, this scatter is also mentioned

by Bird in Ref. [5] where it is remedied by introducing separate collision and sample cells and

adapting and body-fitting both kinds of cells. Voldipar does not currently offer non-uniform cells
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Figure 1.24: Nondimensional overall temperature contours for the supersonic flat plate problem at
tmax, or 0.0015 s after steady state was achieved: Kn = 0.01, Main = 10.0 (cylinder body artificially
superimposed)

or separated cell types, so this scatter may be unavoidable until these features are implemented.

However, despite the scatter present, general trends show that Voldipar is acceptably close to DS2V.

Additionally, a simpler, single value to compare is the full-cylinder drag force. The sectional drag

force results were 39.90 N/m for DS2V and 40.25 N/m for Voldipar. When the same problem was

run in Voldipar using a constant time step of ∆t = 1.20 × 10−7 s, this value was slightly smaller

at 40.10 N/m. Further still, running the computation for longer time after steady state tends to

reduce the drag force slightly. The value for a total run time of tmax = 0.01 s with variable time

steps was 40.17 N/m. The accepted value for this problem is typically given at approximately 40

N/m[5].
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Figure 1.25: Mach number contours and selected streamlines for the supersonic flat plate problem at
tmax, or 0.0015 s after steady state was achieved: Kn = 0.01, Main = 10.0 (cylinder body artificially
superimposed)
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Figure 1.26: Dimensional partial heat fluxes to the cylinder surface over the steady-state sample
interval.
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Table 1.6: Hypersonic cylinder flow problem variable values and parameters.

Description Symbol Value Unit

Mach number Ma 10.0
Knudsen number (based on 2Rc) Kn 0.01
Ratio of real-to-simulated particles FN 5.7244× 1014

Cylinder center location x0 0.3524 m
Cylinder radius Rc 0.1524 m
Domain length Lx 0.85 m
Domain height Ly 0.40 m
Num. cells in x Ncx 300
Num. of cells in y Ncy 135
Num. of subcells per cell (each dir.) Nsc 2
Variable time step scaling (Vlpr. only) αt 0.5
Time to steady state (imposed) tss 0.0015 s
Time to end tmax 0.003 s
Num. time steps per sample Nsam 5
Temp. of inflow stream Tin 200 K
Temp. of cylinder surface Ts 500 K
Inflow number density nin 4.247× 1020 m−3

Inflow speed (aligned) Vin 2634.1 m/s
Gas molecular mass mg 6.630× 10−26 kg
Gas viscosity power ω 0.74
Gas reference temp. Tref,N2 1000 K
Gas reference diameter dg 3.595× 10−10 m
Gas rotational deg. of freedom ζ 0
Rotational relaxation constant Zrot 1/5
Voxel resolution (Voldipar only) nvox 800
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Figure 1.27: Pressure coefficient over cylinder surface over the steady-state sample interval. θ = 0
corresponds to the leading side of the cylinder.
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1.2.7 Airfoil Example

Some additional verification was performed using a NACA0012 symmetric airfoil section in

2D, with a chord length of 1m. Although there are no results with which to directly compare,

this problem was selected to test Voldipar’s capability to quickly introduce new geometry and fluid

conditions. A number of cases were run for the airfoil under the general conditions of Table 1.7

for molecular Nitrogen. Boundary conditions were set to be a stream inflow at the left, vacuum on

the right, and stream at the top and bottom. The airfoil’s centroid, situated at its quarter-chord,

and along its chord line is positioned at (x0, y0). A range of angles of attack 0 ≤ α ≤ π/2 was

performed for four magnitudes of Knudsen numbers (shown in Table 1.7) that span the transition

regime region. A steady-state solution was assumed at the time of tss = 0.002 s, which may not

be the most optimal choice. However, the purpose of this study is to choose a consistent set of

parameters and perform a large batch of computations using DSMC rather than attempt to verify

the physical result of this particular problem. Figures 1.28 to 1.31 show contours for the chosen

case of Kn = 0.1 at α = 46◦.

Of particular interest in this example is the ill-defined shock that lies ahead of the body

in Figure 1.31 and the attached flow that leaves the trailing edge of the foil in a thin layer. The

expected low-pressure region behind the airfoil is also present. At this angle of attack, it experiences

an upward force (lift) and rightward force (drag) both on the order of 1 N. As forces and moments

as functions of dynamic state are of interest for characterizing rigid-body dynamics in rarefied gas

flows, the full set of data for all angles and all Kn were aggregated so as to compare lift, drag and

pitching moment as the airfoil underwent these changes in state. Figures 1.32 and 1.34 depict each

change in magnitude of Kn corresponding to an equivalent scaling of forces and moments exerted

on the body as would be expected. The airfoil also experiences much more drag than lift, with

a maximum Lift/Drag ratio occurring at approximately 30◦ for all Kn but Kn = 10, where it is

maximum at 24◦. Pitching moment is signed such that negative moment implies a rotation towards

α = 0, what is considered a stabilizing moment for an initial deflection of α > 0. This moment
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Figure 1.28: Nondimensional number density contours for a NACA0012 airfoil in hypersonic flow
of Nitrogen at α = 46◦.

is taken about the airfoil’s imposed centroid, or quarter–chord. When evaluating moment about a

location farther aft of this location along the chord line, pitching moment begins to inflect, switching

sign and creating an unstable system as would be expected as the center of pressure remains within

a region centered around roughly 50% from the leading edge. The center of pressure itself is a

function of α, which implies the location of the centroid must remain fore of the entire region

within which the center of pressure moves during a change in α. This dynamic margin is plotted

for a similar case with this airfoil in the free-molecular limit as Figure 3.5.

While this problem is of minor interest practically, it is a demonstration of the maturity

of Voldipar. This capability is required to begin investigating rigid-body dynamics problems and

providing the source functions described in Chapters 3 and 4.
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Figure 1.29: Stagnation pressure ratio contours for a NACA0012 airfoil in hypersonic flow of
Nitrogen at α = 46◦.
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Table 1.7: Hypersonic NACA0012 airfoil section flow problem variable values and parameters for
four different values of Kn .

Description Symbol Value Unit

Mach number Ma 10.0
Knudsen numbers (based on chord) Kn 0.01, 0.10, 1.00, 10.00

Ratio of real-to-simulated particles FN

2.75× 1015

2.00× 1014

2.50× 1013

2.30× 1012

Centroid location (x0, y0) (0.5, 1.2) m
Domain length Lx 2.00 m
Domain height Ly 2.00 m
Num. cells in x Ncx 200
Num. of cells in y Ncy 200
Num. of subcells per cell (each dir.) Nsc 2
Variable time step scaling (Vlpr. only) αt 0.5
Time to steady state (imposed) tss 0.002 s
Time to end tmax 0.005 s
Num. time steps per sample Nsam 4
Temp. of inflow stream Tin 200 K
Temp. of airfoil surface Ts 300 K

Inflow number density nin

1.294× 1020

m−31.294× 1019

1.294× 1018

1.294× 1017

Inflow speed (aligned) Vin 2882.78 m/s
Gas molecular mass mg 4.65× 10−26 kg
Gas viscosity power ω 0.74
Gas reference temp. Tref,N2 273 K
Gas reference diameter dg 4.17× 10−10 m
Gas rotational deg. of freedom ζ 2
Rotational relaxation constant Zrot 1/5
Voxel resolution (Voldipar only) nvox 500
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Figure 1.30: Nondimensional overall temperature contours for a NACA0012 airfoil in hypersonic
flow of Nitrogen at α = 46◦.



www.manaraa.com

67

x [m]

y 
[m

]

 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

1

2

3

4

5

6

7

8

9

Figure 1.31: Nondimensional Mach number contours and selected streamlines for a NACA0012
airfoil in hypersonic flow of Nitrogen at α = 46◦.
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Figure 1.32: Lift and drag of a NACA0012 airfoil section in hypersonic flow of Nitrogen over the
entire range of 0 ≤ α ≤ π/2 for each Knudsen number.
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Figure 1.33: Lift/Drag ratio of a NACA0012 airfoil section in hypersonic flow of Nitrogen over the
entire range of 0 ≤ α ≤ π/2 for each Knudsen number.
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Figure 1.34: Pitching moment about the quarter–chord of a NACA0012 airfoil section in hypersonic
flow of Nitrogen over the entire range of 0 ≤ α ≤ π/2 for each Knudsen number. The moment is
signed such that negative implies stabilizing.
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Chapter 2

Implementing Gas-Surface Interaction Models in DSMC

Accurate analysis and simulation of rarefied gas dynamics problems require the knowledge

of appropriate boundary conditions of the Boltzmann equation. These conditions take the form

of Gas-Surface Interaction (GSI) models which describe how energy and momentum is transferred

to/from a surface and how reflecting molecules are scattered following a surface impact. Much

of the fidelity of rarefied gas dynamics simulations depends on the accuracy of the submodels

employed therein. In the case of DSMC, submodels of molecular collisions, movement and surface

interactions comprise the code. Collision modeling must be further divided into models of internal

modes, some of which were mentioned briefly in Section 1.1. This aspect of discrete particle

interaction can become quite complicated and can include chemical reactions that would occur at

or near collision events. Molecular movement is primarily a function of the geometry of the code.

For Voldipar, this is discussed in Section 1.2.1 with additional relevant information discussed in

subsequent subsections. Remaining, then, is the modeling of surface interactions.

The reason for focus on gas-surface interactions lies primarily in the desire to solve engineering

problems of the “satellite drag” type. Much of the remaining unknown contributions to spacecraft

drag may be from poor knowledge of how molecules are adsorbed and re-emitted from real surfaces.

This uncertainty presents a problem when attempting to measure atmospheric density by observ-

ing the motion of real spacecraft, or from instrumentation on-board the spacecraft. Attempts at

measuring densities by authors such as Cook [16, 17], Jacchia [33, 34] and King-Hele [37, 39, 38]

starting in the 1960s brought about the conclusion that error in drag coefficients led to errors
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as high as 50% in the resulting densities. Poor atmospheric density models feed back to create

poor spacecraft dynamics models, (as density is an essential parameter in numerical rarefied gas

dynamics simulations) and hinder a number of space and earth atmospheric scientific pursuits.

This chapter identifies some of the most common GSI models and describes how they may

be implemented in a DSMC code. Extended focus is given to the Cercingnani-Lampis (CL) model,

as it has the most complete incorporation of accommodations and kernels of all the GSI models

discussed here. The CL model’s algorithmic implementation by R.G. Lord, known as CLL, is

examined for correctness and a slight modification is applied to aid in its accuracy. Additionally,

the Schamberg reflection kernel’s implementation is shown to extend to general cases in which

2D analytical or numerical (i.e. obtained from experiments) kernels are given. Altogether, the

clarifications and methods provided in this chapter intend to strengthen DSMC as a tool used for

rarefied gas dynamics.

2.1 Gas-Surface Interaction Models

Surface interaction is defined as the way in which a particle impacts a solid boundary, is ad-

sorbed, and is reflected. There are various differing models for determining reflected or post-impact

quantities such as velocity distribution and temperature. Furthermore, the specific chemistry of

the particle’s interaction with the surface can greatly affect the prediction of post-impact behav-

ior. Surface interaction can be separated into surface physics and reflection dynamics. Surface

physics is primarily concerned with understanding and modeling if and how a molecule is adsorbed

and re-emitted. Typically, energy and momentum accommodation modeling represent the bulk

of theory in this half of surface interaction. The other half consists of velocity distribution or

scattering and the methods of producing the proper results in the form of scattering kernels. It

is often that a scattering kernel will include inputs from a surface physics model in the form of

a thermal or momentum accommodation. The following sections summarize the practical forms

of surface interaction as they may appear in numerical methods. An additional review by Moe

and Moe [49] also presents some useful information, including experimental comparisons of drag
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coefficients calculated using assumptions of different GSI models that supplements the following

sections well.

2.1.1 Maxwellian Standard Reflection

Most DSMC methods employ at least a standard Maxwellian diffuse reflection model. In this

model, first described by Maxwell[52, 46, 47] in the 1860s, molecules are assumed to be completely

adsorbed and re-emitted at the surface temperature–a process referred to as full thermal accommo-

dation. Reflection velocity distributions are therefore unaffected by incident distributions, but are

affected by the necessity of the reflected particle to leave the surface in the half-plane defined by

the surface outward normal. Modifications to this model include the addition of full or impartial

thermal accommodation and/or partial (i.e. fractional) specularity. The Maxwellian equilibrium

distribution function is given as

f0 =
β3

π3/2
e−β2c′2 (2.1)

where c′ is the molecular thermal speed and the reciprocal of the most probable thermal speed is

β =
mg

2kT
(2.2)

with k as Boltzmann’s constant and mg as the molecular mass of a molecule of the gas under

consideration. The distribution of molecular speed in spherical polar coordinates, irrespective of

direction is

fc′ =
4β3

π1/2
e−β2c′2 (2.3)

This is the distribution function of molecular thermal speed in a static gas at a temperature T ,

and thus does not provide the information required to select reflected velocity components. Some

manipulation (as shown by Vincenti and Kruger [73] and Bird [3]) can reduce Equation 2.1 to the

single component distribution or scattering kernel of

fu′ =
β

π1/2
e−β2u′2 (2.4)

from which velocity components can be sampled if there are no restricting boundary conditions. In

the case of a reflection from a surface, such a boundary condition does exist, however. Sampling
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from Equation 2.4 will produce both negative and positive velocity component values. When

considering the variable u′ to be the velocity component normal to the surface and facing outward

from it, using this equation as the distribution function would be unacceptable as it would allow

reflecting molecules to penetrate the surface. Sampling from only the positive half of the distribution

using a rejection technique is also incorrect, as the presence of the wall induces a preferred direction

to the distribution that is ignored.

Equation 2.4 is a scaled symmetric Gaussian normal distribution function of the type

fu′n ∝ u′e−β2u′2 (2.5)

where the scaling by u′ necessarily enforces a singled-sided distribution. Bird states in Chapter

12 of Ref. [3] that to incorporate the effects of this preferred direction, a normalization over the

range u′ ∈ [0..∞], where u′ is the normal to the surface, must be performed, thus obtaining the

surface-outward-normal distribution

fu′n = 2β2u′e−β2u′2 (2.6)

Sampling from Equation 2.6 can be performed using a rejection method, but a faster, direct alter-

native is available in this particular case. The Box-Muller method [7] is a method of choosing two

independent random variables, each of which are distributed according to a symmetric Gaussian

distribution, from a set of independent uniform random variables. The two sets are related by the

Box-Muller transformation

z1 =
√−2 ln(Rf2) cos(θ) =

√
2βR cos(θ) (2.7)

z2 =
√−2 ln(Rf2) sin(θ) =

√
2βR sin(θ)

where the definition R2 = −(1/β2) ln(Rf2) is made and θ = 2πRf3 and Rf2 and Rf3 are random,

independent, uniformly-distributed variables in the range (0..1]. The reason for this definition

is that this is a transformation of the 2D uniformly-distributed random variable vector Rf =

[Rf2 Rf3 ]
T, which is interpreted as being polar, to the Cartesian Gaussian 2D vector or joint-

distribution z = [z1 z2]T where
√

2βR is the radial coordinate. In 2D, the variable s = z2
1 + z2

2 ,



www.manaraa.com

74

which is the sum of squares of two standard normal variables, will be distributed according to the

χ2–distribution, which is

fχ2(s : k) =
1

2k/2Γ(k/2)
sk/2−1e−s/2 (2.8)

In 2D, k = 2, and the equation simplifies to

fχ2(s : 2) = fS(s) =
1
2
e−

s2

2 (2.9)

which corresponds to the exponential distribution, scaled by 1/2. Thus, since the range of 2fχ2 is

[0..1], the following definition can be made:

2fχ2 = Rf1 = e−
s2

2 (2.10)

where Rf1 is another uniform random variable in the range (0..1]. Furthermore, is clear that,

according to the transformation of Equation 2.7 that

s = z2
1 + z2

2 = (
√

2βR)2 cos2(θ) + (
√

2βR)2 sin2(θ) = 2β2R2 (2.11)

Substituting this definition of s into Equation 2.10 and inverting (which can only be done now

that the distribution is in the form of a simple exponential function) yields the expression for R

previously mentioned as a definition, but now as a function of a new uniformly-distributed random

variable:

R = ± 1
β

√
− ln(Rf1) (2.12)

If the positive solution is taken, then u′n = R is a velocity component parallel to the outward normal

of a surface which is only a function of a single, uniformly-distributed random variable Rf1 , which

is easy to generate using most any random number generator. The two parallel components u′p1 and

u′p2 should follow the symmetric normal distribution of Equation 2.4. Thus, they can be generated

by using Equations 2.7 directly. The final, reflected velocity vector, in surface coordinates is then

Vref,diff =


u′n

u′p1

u′p2

 =


R

√
− ln(Rf2

)

β cos(θ)
√
− ln(Rf2

)

β sin(θ)

 (2.13)



www.manaraa.com

75

This velocity can then be rotated into any other coordinate system in order to facilitate the re-

quirement of determining inertial or computational velocity from a surface of any orientation. In

2D, this can mean assuming u′n is already aligned with one of the inertial coordinate directions,

such as the positive x-direction, determining the rotation angle from that direction to the target

surface’s normal direction, and performing the rotation on the reflected velocity as it is given in

Equation 2.13.

All that remains is to prove that the distribution of R, fR(r), is identical to Equation 2.6.

This is done by noting that fR(r) is the distribution of the sum of the squares of two normal

distributions, s, the same as the distribution of 2β2R2, from the definition of s in Equation 2.11.

Therefore, the distribution of the square root of s, scaled by 1/(2β2), should give fR(r). The

variable r is defined through the transformation

r = g(s) =
√

s

2β2
(2.14)

which derives from the definition of s in Equation 2.11. The inverse transformation is

g−1(r) = s = 2β2r2 (2.15)

or simply just a slight re-statement of Equation 2.11 itself. The first derivative is

g′(s) =
dg

ds
=

√
2

4β
√
s

⇒ g′(r) =
1

4β2r
(2.16)

Transforming from the fS(s) distribution to the fR(r) distribution is then performed as

fR(r) =
∣∣∣∣ 1
g′(g−1(r))

∣∣∣∣ fs(g−1(r)) =
∣∣∣∣ 1
g′(s)

∣∣∣∣ fS(s) = 2β2re−β2r2
(2.17)

which is the same as Equation 2.6.

The distributions used for determining the diffuse reflected velocity are illustrated in Fig-

ure 2.1. The theoretical normalized functions are compared to a numerical generation of the

components of velocity using Equation 2.13 for a large number of samples. The generated function

fc′ is the magnitude of the entire vector, while the theoretical fc′ is the free-space (i.e. surface-

independent) speed as given by Equation 2.3. This comparison makes it clear that the imposition
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Figure 2.1: Comparison of the positive half of the domain for normalized theoretical diffuse wall
velocity distribution functions with numerical generation of 100,000 samples. fv′ and fw′ are the
two parallel components, corresponding to up1 and up2 from Equation 2.13.

of the surface’s preferred direction not only pushes the entire distribution of the normal component

(fu′ in the figure) rightward, but skews the resulting generated speed by pushing it higher as well

(i.e. the curve and the data should be different, as the figure indicates).

Although this procedure is included in Appendix C of Ref. [3], its relation to the Box-

Muller transformation and other details and proofs are omitted. These details have been discussed

here for the purpose of providing a more complete explanation of how to practically implement

generation of a standard Maxwellian diffuse reflected velocity, which is a key element of basic

DSMC. Furthermore, Maxwellian inflow velocity generation for stream boundaries is closely related

to diffuse reflected velocity generation as both enforce the same condition of a modified equilibrium

distribution that is affected by the presence of a preferred direction of effusion. The relation to
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stream boundary conditions is also apparent, as discussed in Section 1.2.5. A more thorough

and mathematically rigorous presentation of this family of subjects is presented by Garcia and

Wagner [25].

2.1.2 Sentman and Thermal/Energy Accommodation

Perhaps the most useful extension to the standard diffuse model is the inclusion of influence

from thermal accommodation. In a surface reflection, reflected molecules may be modeled as

having different temperatures than the surface itself. It is then assumed that incident molecules

“accommodate” to the surface to some degree and are re-emitted at a temperature that is not

necessarily the surface temperature. The amount of this thermal adjustment is measured by the

accommodation coefficient:

αn =
Ttr,i − Ttr,r

Ttr,i − Ts
(2.18)

where Ts is the actual surface temperature and Ttr,i is the translational or kinetic temperature of

a molecule incident upon the surface, defined as

Ttr,i =
mg

3k
‖Vi‖2 (2.19)

where Vi is the molecular incident velocity. In this context, αn is the thermal or energy ac-

commodation, which assumes isotropic energy balance between the surface and the gas. Other

accommodations may be defined, such as momentum accommodations, that are directional (e.g.

the CL model, Section 2.1.4). The accommodation coefficient is often a given or known constant,

thus Ttr,r, the reflected molecule temperature, can be defined as

Ttr,r =
mg

3k
‖Vi‖2(1− αn) + αnTs (2.20)

Sentman [67] first proposed using αn to determine the reflected velocity distribution, using Ttr,r as

the input, through β, to the standard Maxwellian reflection kernels of Equations 2.4 and 2.6. Of

note is the use of only translational energy in the determination of αn in Equation 2.18. Without

consideration of additional internal modes (e.g. rotational) that would change the total molecular
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energy, and thus temperature, of incident particles, the definition of Equation 2.19 remains un-

changed. However, with gases comprised of multiple species and with species that are polyatomic,

these definitions become more complicated. These complications are reserved in this discussion as

it intends only to be a summary. Further details on this matter can be found in Chapters 1 and 5 of

Ref. [3]. Determination of an appropriate value for αn is the subject of separate theory. Thus, the

only input to the Sentman model is αn, with possible extensions of a specular/diffuse weighting.

2.1.3 Nocilla

A modification of the standard Maxwellian diffuse reflection model, which is applicable

for free-molecular flow only, is the Nocilla model [53, 31], which creates a so-called “drifting”

Maxwellian distribution function. In the standard diffuse model, the surface normal vector rep-

resents the direction upon which the distribution of velocities is centered when projected into the

2D incidence plane. This function is often termed a raised cosine distribution. The rotation of the

centering vector from the surface normal direction to another direction dependent on the gas prop-

erties causes a preferred reflection direction, with a lobe centered about it. Nocilla’s re-emission

reflection distribution kernel is given as the distribution function

fnoc(c′) =
β3

r

π3/2
e−β2

r (c′−Vr)2 (2.21)

where c′ is the molecular thermal velocity and βr =
√
mg/(2kTr) is the reflected speed reciprocal–a

function of Tr, which is the imposed reflection temperature. Therefore, the additional parameters

are introduced are the drift velocity, Vr and Tr, which is considered to be distinct from the actual

surface temperature Ts. Notable is the difficulty in determining the values of these parameters. It

is mostly unclear what choice should be made for the drift velocity and much of the information

that provides this, or its more easily-measured alternative, the speed ratio sr = ‖Vr‖/
√

2kTr/mg,

has come from experimental data. A review of relations between reflected and incident angles as

well as values for speed ratio was performed by Collins and Knox [15] and will not be discussed

here. The reflection temperature, however, can be determined from an imposition of a thermal
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accommodation model as in all kernels where this parameter (or a similar variable) is present.

2.1.4 Cercignani-Lampis

It is often in the context of numerical simulation via the DSMC method that specific imple-

mentations of GSI models are of the most interest. Although the fully diffuse Maxwellian model

has been most often used, the Cercignani-Lampis (CL) model [10, 9, 11] may represent the most

rigorously-developed of alternatives to fully diffuse reflection, It is a scattering kernel with im-

plicit inclusion of normal and tangential energy and momentum accommodation, and meets the

requirements of reciprocity, positive definiteness and normality necessary to satisfy the Boltzmann

equation.

Those seeking to validate the CL model and indeed, values of its parameters, with respect

to real problems such as those arising from the desire to understand spacecraft flight aerodynamics

(e.g. satellite drag) often turn to DSMC. A means of generating the necessary reflected velocities

in code, in the form of an algorithm, such that methods such as DSMC may implement the CL

model in simulation was developed by Lord[44]. This became known as the Cercignani-Lampis-Lord

(CLL) GSI model. This algorithm is very quick and does not pose much implementation overhead

beyond a fully diffuse GSI model. However, an oversight has existed thus far in the form of a

lack of proper satisfaction of the necessary condition of surface isotropy. This section explains the

CL kernel, the CLL algorithm’s mistake, and proposes a simple adjustment that properly satisfies

surface isotropy, as well as allows the CL kernel to function as was originally intended for cases of

“back–scattering” tangential accommodation (σt > 1).

The CL scattering kernel can be expressed in a few ways. It is often given in what is perhaps

its most physically meaningful form,

fCL(ui, ur,Vi,Vr) =
2β4u

παnαt
I0(q)e−Dnβ2

e−Dtβ2
(2.22)

where β =
√
mg/(2kTs) is the reciprocal of the most probable molecular speed at a surface tem-

perature of Ts. The other parameters are explained in Table 2.1. For brevity and notational clarity,
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Table 2.1: Parameter names and descriptions for the CL kernel.

Symbol Description

ui Component of incident velocity normal to the surface
ur Component of reflected velocity normal to the surface
vi Component of incident velocity along surface-tangential direction 1
vr Component of reflected velocity along surface-tangential direction 1
wi Component of incident velocity along surface-tangential direction 2
wr Component of reflected velocity along surface-tangential direction 2
Vi Vector sum of incident velocity in the surface plane, Vi = [vi wi]T

Vr Vector sum of incident velocity in the surface plane, Vr = [vr wr]T

αn Normal energy accommodation coefficient
αt Tangential energy accommodation coefficient, defined as αt = σt(2− σt)

the variables q, Dn and Dt are defined as

q =
2β2

√
1− αn

αn
uiur (2.23)

Dn =
u2

r + (1− αn)u2
i

αn
(2.24)

Dt =
‖Vr − (1− σt)Vi‖2

αt
(2.25)

The magnitude of vectors Vi and Vr are also the tangential components of the total incident and

reflected velocity vectors, respectively, only in the 2D planes of incidence and reflection. This is to

make the important clarification that the CL kernel describes a molecule’s reflection from a surface

entirely within the incidence and reflection planes. Each plane contains only a surface-normal and

surface-tangential component of velocity and itself can be rotated azimuthally (about the surface

normal). Equation 2.22 is a statement of this formulation. For an isotropic surface, this further

implies that neither tangential direction is more significant than the other, meaning that component

distributions for the surface-tangential directions t̂1 and t̂2 must be equivalent. In fact, in Lord’s

original discussion, the CL kernel is also introduced this way, with the statement:

“... the scattering kernel therefore consists of a product of three terms, one for each
component. For isotropic surfaces, however, the two tangential velocity components
v and w must behave identically, so that two of the terms are exactly similar in
form.” Ref. [44], Section 2.
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Equation 2.22 can then be written as a decomposition of the three directions in the surface coor-

dinate system as

fCL,n(ui, ur) =
2β2u

αn
I0(q)e−Dnβ2

(2.26)

fCL,t1(vi, vr) =
β√
παt

e−Dt1β2
(2.27)

fCL,t2(wi, wr) =
β√
παt

e−Dt2β2
(2.28)

where I0 is the modified Bessel function of the first kind. The definitions of the exponential

arguments for the tangential components are

Dt1 =
[vr − (1− σt)vi]

2

αt
(2.29)

Dt2 =
[wr − (1− σt)wi]

2

αt
(2.30)

which naturally satisfy the joint-probability density distribution that is Equation 2.22 as the prod-

uct:

fCL = fCL,nfCL,t1fCL,t2 (2.31)

Any algorithm that aims to generate the three reflected velocity components (ur vr wr) should

then, over a large number of samples for each component, generate distributions that match Equa-

tions 2.26 to 2.28. The CLL algorithm supposedly provides the method of sampling reflected

components of velocity in three dimensions.

2.1.4.1 Corrections to the CLL Algorithm

Lord’s original presentation of a generation algorithm for the CL kernel presents a velocity

space diagram that interprets a reflection using the CL kernel[44]. This diagram is reproduced in

Figure 2.2. Lord describes this geometry as being applicable to both the normal kernel and the

tangential (that is, product of Equations 2.27 and 2.28) kernels. When it describes the normal

kernel, Lord’s definitions for the various points and distances allow the correct derivation of a gen-

erating algorithm for ur. However, when the diagram is re-interpreted as describing the tangential
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Figure 2.2: Lord’s original geometric interpretation of the CL kernel.

reflection, Lord re-defines the horizontal axes as in-surface-plane direction t̂1 and the vertical axis

as in-surface-plane direction t̂2, with the line segment OR as being equivalent to Vr =
√
v2
r + w2

r

(the magnitude of the tangential velocity). Using the same definitions (with a change of variable

from αn to αt) of

OQ =
√

1− αt OP (2.32)

where OP = vi, Lord’s algorithm follows:

r1 =
√
−αn ln(R1)

γr1 = 2πR2

ur =
1
β

[
r21 + u2

iβ
2(1− αn) + 2r1 |uiβ|

√
1− αn cos(γr1)

] 1
2 (2.33)

r2 =
√
−αt ln(R3)

γr2 = 2πR4

vr =
1
β

[
viβ

√
1− αt + r2 cos(γr2)

]
(2.34)

wr =
r2 sin(γr2)

β
(2.35)

where Ri are random fractions taken from a uniform distribution in the range [0, 1]. What is obvious

about this algorithm is that the two tangential components vr and wr have different definitions,
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and thus, generate improperly restricted distributions. The aforementioned surface isotropy does

not permit this asymmetry. What is meant by “symmetry” in this sense is that both vr and wr

should be distributed similarly in the surface plane, where no azimuthal angle is more inherently

probable than another, such that the definitions should not offset one more than the other. The

generating equation for vr clearly possesses the offset of viβ
√

1− αt, where the equation for wr

does not. This implies that reflections always posses a bias towards direction t̂1, or in other words,

a reflection uses one in-surface-plane tangential incident component “more” than the other.

The reason for this discrepancy is the misinterpretation of the diagram in Figure 2.2. In short,

the same diagram cannot be used to describe the tangential reflection. If the diagram is considered

an illustration of velocity space for a reflection in the reflection plane, then the definitions given

must appear as illustrated in Figure 2.3. In this diagram, the incidence and reflection planes sit

Surface Plane

Reflection Plane
Incidence Plane

t̂1

n̂

t̂r

cr

γr

ci

t̂2

Figure 2.3: Locations and definitions of a reflection. Relevant points are reproduced along the line
segment that is collinear with the reflection plane in-surface direction t̂r.

“above” the surface plane as illustrated. The reflection plane is oriented at an arbitrary azimuth

angle γr, which must be a random variable uniformly distributed between 0 and 2π if the surface is

isotropic. The two tangential directions in the surface plane are shown as well as the directions t̂i

and t̂r, which are the directions parallel with the incident and reflection planes, respectively. The

reflected velocity vector cr is projected into the surface plane, creating Vr, which lies along direction

t̂r, and being further decomposed into components vr and wr by projections along directions t̂1

and t̂2, respectively. A similar description can be made for incident velocity vector ci.

What is important to note is that the CL model decomposes the reflected velocity into a
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contribution from a diffuse scattering model (which shall be termed the independent component)

and a contribution from the incident total velocity (termed the dependent component). Thus, the

statement that γr must be uniformly distributed amongst all possible directions in the surface plane

for an isotropic surface specifically applies to how the independent component is defined. The CL

kernels naturally introduce (by superposition) the dependent components which create a preferred

azimuthal direction that is a function of the incident azimuth (or in this case, directly from the

individual components vi and wi).

From these considerations and this geometry, a new tangential reflection diagram can be

made by examining the surface plane. Figure 2.4 shows one quadrant of the surface plane where

the distance QP = Vr1, which is the dependent component of the in-plane tangential speed. The

offset distance OQ is shown as being the magnitude of the variable r = OQ, which, as before, is

distributed according to the half-plane Maxwellian diffuse kernel

f(r) =
2β2r

αt
e

r2

αt (2.36)

This is the typical kernel used to describe scattering of the normal component of velocity off

of a standard fully diffuse surface with full accommodation. Sampling two orthogonal velocity

components from this distribution can be performed with the Box-Muller [7] transform as usual.

In this case, this leads to the definitions

Vr =
r

β
+ Vr1

vr0 =
r

β
cos(γr)

wr0 =
r

β
sin(γr)

vr1 = Vr1 cos(γr) =
√

1− αtvi

wr1 = Vr1 sin(γr) =
√

1− αtwi (2.37)

The CL kernel creates a type of shifted Maxwellian where the offset or shift velocity is given by a

scaling of the incident velocity by the factor
√

1− α, where α is either αn for the normal component

or αt = σt(2− σt) for the reflection plane tangential component. This means that the line segment
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Figure 2.4: Correction to Lord’s tangential (in-plane) reflection diagram (velocity space).

ON = Vi, where Vi is the in-surface-plane incident tangential speed, and thus Vr1 =
√

1− αtVi

and similarly, component-wise: vr1 =
√

1− αtvi, wr1 =
√

1− αtwi. This formulation leaves the

CL kernel to be in-plane direction-independent, as it must be for a tangentially isotropic surface,

preferring only to specify how the scattering occurs of the summed component Vr along the direction

t̂r
1 . From this definition of Vr1, the visible geometry, and Equations 2.37, the reflected velocity

components in the surface plane are given as

vr = v0 + v1 =
r

β
cos(γr) + vi

√
1− αt (2.38)

wr = w0 + w1 =
r

β
sin(γr) + wi

√
1− αt (2.39)

where once again, because of the uniform distribution of these components angularly in the surface

plane, variables r and γr are random variables that are generated separately from those given in

Equation 2.33, renamed r2 and γr2 , as shown in Equations 2.40.

r2 =
√
−αt ln(R3) (2.40)

γr2 = 2πR4

There is still yet a problem with this formulation. The tangential momentum accommodation
1 An anisotropic model would require tangential momentum accommodation coefficients to be defined for each

surface direction and thus, would not allow a simple scaling relationship between speeds Vr1 and Vi.
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coefficient σt is one of the CL kernel’s tunable parameters, which gives a measure of how tangential

momentum is imparted to reflecting particles. It is permitted to be in the range 0 < σt < 2.

However, for values of σt > 1, a reflection should have a reflected in-plane velocity Vr that is

opposite in sign to Vi. Figure 2.5 illustrates this problem, where it can be seen that the magnitude

of the vector Vr is Vr and is unchanged regardless of σt, with only a sign change occurring.

Equations 2.38 and 2.39 will fail to properly capture this phenomenon. For the case of σt = 1,

the distributions fCL,t1 and fCL,t2 are equivalent for all ci. It is perhaps for this reason that the

appropriate handling of tangential momentum has been overlooked thus far.

Vi

Vr Vr

Vi

φφ
t̂1t̂1

t̂2 t̂2

1 ≤ σt ≤ 20 ≤ σt ≤ 1

Figure 2.5: An illustration of the action of the value of σt on the reflected in-surface-plane tangential
velocity.

This problem is easily remedied by realizing that, according to the geometry of Figures 2.3

and 2.4, the scaling of Vi should have two solutions, i.e. Vr1 = ±√1− αtVi, as these components

are not restricted to the positive half-space of the surface system (as is the case for the normal

component2 ). The final versions of the generating equations for components vr and wr are then

vr =


r2
β cos(γr2) + vi

√
1− αt for 0 < σt ≤ 1

r2
β cos(γr2)− vi

√
1− αt for 1 ≤ σt < 2

(2.41)

2 Naturally, the absolute value seen in the formulations of Equation 2.34 as given by Padilla and Boyd[55] cannot
be correct either.
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wr =


r2
β sin(γr2) + wi

√
1− αt for 0 ≤ σt ≤ 1

r2
β sin(γr2)− wi

√
1− αt for 1 ≤ σt ≤ 2

(2.42)

The normal component equation is unchanged from Equation 2.33.

2.1.4.2 Numerical Results

To visualize the difference the corrected tangential component generation equations make, a

direct evaluation and plotting of the individual components of the CL kernel (Equations 2.26 to

2.28) over a suitable range of possible values of reflected components of velocity was first made.

A gas of mass mg = 46.5 × 10−27 kg with a surface temperature of Ts = 300K was chosen. The

generating equations for each component for the original formulation (Equations 2.33 to 2.35) were

then used to generate 100,000 samples of each component in 200 bins. The same procedure was

then performed for the corrected version of the algorithm. For all functions, a constant value of

ci was chosen as ci = [ui vi wi]T = [−8600 −450 1600]T m/s. This comparison is shown in

Figure 2.6.

The tangential components’ numerical distributions (i.e. those that were generated) can be

seen to fail to correspond to their target distributions for the original algorithm (Figures 2.6a and

2.6b). For the case of σt < 1 (Figure 2.6a), the distributions of vr appear to match, yet those of

wr do not, thus elucidating the aforementioned lack of appropriate isotropy. Tangential generated

distributions for the corrected algorithm, however, appear to follow their evaluated distributions

for both cases of σt (Figures 2.6c and 2.6d).



www.manaraa.com

88

−2000 −1000 0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

u
r
, v

r
, w

r
 [m/s]

N
or

m
al

iz
ed

 c
om

po
ne

nt
 o

f f
C

L

 

 

f
CL,n

fnum
CL,n

f
CL,t1

fnum
CL,t1

f
CL,t2

fnum
CL,t2

(a) Lord’s original algorithm with σt < 1 (σt = 0.7)
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(b) Lord’s original algorithm with σt > 1 (σt = 1.3)
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(c) Corrected algorithm with σt < 1 (σt = 0.7)
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(d) Corrected algorithm with σt > 1 (σt = 1.3)

Figure 2.6: Comparison of normalized distributions of a direct evaluation of the CL kernel with
Lord’s original generation algorithm and the corrected version for αn = 0.8, ci = [ui vi wi]T =
[−8600 −450 1600]T m/s. The num superscript indicates numerically generated distributions, which
are plotted with line markers only.
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2.1.4.3 DSMC Comparisons

There are few examples of the CLL algorithm being implemented in numerical simulations.

This analysis is performed with the understanding that GSI models such as CL are to be imple-

mented in the DSMC method. A comparison with an investigation by Padilla & Boyd [55] and

experimental results (also used by Padilla & Boyd) by Cecil & McDaniel [8] was made in order to

place the improvements in the CL algorithm in the appropriate context. The problem of interest

is a flat plate in a hypersonic flow (created by placing a small fused quartz plate model in the zone

of a silence of an expanding free jet in Ref. [8]) with geometry and conditions given by Figure 2.7

and Table 2.2 (flow enters from the left). The center-line quantities in Table 2.2 refer to the fact

that the experiment was constructed such that the plate’s surface was collinear with the center-line

of an axisymmetric free jet. The Knudsen number is based on the plate length of ` = 20mm. The

plate’s exposed surfaces were modeled with CL (either the original or newly corrected versions).

A small region of specular surface was specified along the plate in the lead-in region, from x = 0

to x = x0. The inflow profiles V (y), T (y), n(y) were obtained as data from the experiment of

Ref. [8] and extend from y = 2mm (the plate’s surface) to y = yin
3 . Inflow properties above yin

were assumed constant and equal to the values of the given data at yin. The top stream boundary

condition was also assumed to be flow under these conditions. Conditions were chosen to best

model the experiment of Cecil & McDaniel as well as the computation by Padilla & Boyd such as

to make an appropriate comparison.

Voldipar was used to perform a simulation time from zero to 7.5 × 10−4s with an assumed

steady state time of 3.75 × 10−4s was used. The particle weighting was 4 × 1012 real particles

per simulation particle. The domain was discretized into 140 uniformly spaced rectangular colli-

sion/sample cells in each direction. Rotational modes were modeled with two degrees of rotational

freedom with a rotational relaxation of Zrot = 18.1 and characteristic temperature of T ∗ = 91.5K.

Padilla & Boyd determined that, of the four values used, a tangential accommodation of
3 The velocity profile is given as a plot by Padilla & Boyd in Ref. [55]. Temperature and number density profiles

are not listed, however. All three profiles were obtained via private communication with the authors of Ref. [55]
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Figure 2.7: DSMC domain geometry and boundary conditions for hypersonic flow over a flat plate.
Flow enters from the left.

σt = 1.00 fit the data of Cecil & McDaniel best for Vx(y) and σt = 0.75 fit best for Vy(y), under the

same conditions, at the same location along the plate. The objective of this comparison was not to

determine what the accommodation coefficients are to properly model hypersonic flow over a flat

plate under these conditions, but rather to compare the effects of the change in implementation of

the CL model as an algorithm. Thus, the aforementioned values of αn and σt were chosen for the

current comparison. Figures 2.8 and 2.9 give these results4 .

The implementation of CL by Padilla & Boyd is the original (uncorrected) version. There

appear to be no significant differences between the corrected and uncorrected versions in Voldipar,

or between either of these results and Padilla & Boyd’s computation (which used the MONACO [19]

code). The most likely reason for this lack of difference between corrected and uncorrected algo-

rithms is the fact that, in 2D, the reflected velocity component along surface tangential direction

two, wr, does not contribute to a change in the planar components ur and vr. It is the generation of

wr that has received the most obvious correction, with the form of vr being essentially unchanged.

In 2D, surface direction t̂2 is aligned with computational direction ẑ, velocities of which are not
4 Data were obtained via digitization of plots in Ref. [55] and in Ref [8], the latter of which did not include error

bars.
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Table 2.2: DSMC simulation parameter values for hypersonic flow of molecular nitrogen (N2) over
a flat plate. Mach and Knudsen numbers are center-line (y = h) values at the inlet.

Variable Symbol Value Unit

Mach number Ma 11.9
Knudsen number Kn 9.5128× 10−3

Domain width Lx 27.0 mm
Domain height Ly 14.0 mm
Plate surface temperature TS 300 K
Plate length ` 20 mm
Plate height h 2.0 mm
Inflow region limit yin 9.5 mm
Lead-in distance x0 2.0 mm
Gas molecular mass mg 46.5 ×10−27 kg
Gas diameter dg 4.17 ×10−10 m
Gas ratio of specific heats γ 7/5
Gas constant R 296.8 kJ/(kg−K)
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Figure 2.8: Comparison of boundary layer velocity profiles for component Vx at a distance along
the plate of 10mm with αn = 1.00, σt = 1.00.

considered in 2D studies such as those of Ref.s[55] and [8]. Note that there is no difference between

the performance of the uncorrected and corrected algorithm in the distribution of vr between Fig-

ure 2.6a and Figure 2.6c. Although this is only true when σt = 1. When σt = 1 and αt = 1, no
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Figure 2.9: Comparison of boundary layer velocity profiles for component Vy at a distance along
the plate of 10mm with αn = 1.00, σt = 0.75.

contribution from incident velocity is made to reflecting molecules. This is the fully-diffuse limit

of the CL model. If more forward tangential momentum is allowed to pass through the surface

reflection process (such as when σt < 1, meaning more specularity), the terms containing vi and

wi in Equations 2.41 and 2.42 will affect the total reflecting velocity. If the computation was fully

3D, or a different definition of surface coordinate systems were employed, this problem would be

assumed to exhibit a difference in boundary layer profiles for σt ≤ 1. In 2D, a difference in the

corrected generating equations and the original algorithm may be seen by performing the plate

simulation with the two surface plane tangential directions swapped. Figure 2.10 shows the result

of this computation for αn = 1.00, σt = 0.25. The corrected profile is skewed forward as a low

tangential momentum accommodation allows more of the incident tangential momentum to push

the profile forward. The uncorrected profile appears indifferent to this change in σt.

Additionally, an immediate difference can be observed in profiles when σt > 1, as both tan-

gential velocity distributions are different between uncorrected and corrected versions even without

regard to tangent direction definition. Figures 2.11 and 2.12 give these comparisons for a value of
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Figure 2.10: Comparison of boundary layer velocity profiles for component Vx at a distance along
the plate of 10mm with αn = 1.00, σt = 0.25.

σt = 1.50. No relevant experimental data or DSMC computations were available in this case, and

thus the comparison is between Voldipar DSMC implementations only.

This back-scattering value of tangential momentum accommodation contributes to much

lower wall slip velocity than in the forward-scattering cases. Both profiles in the uncorrected

results appear closer to those at much lower values of σt (such as σt = 0.5 in Ref.s[55] and [8]).

The corrected results exhibit a quality closer to their counterparts for σt = 1 and σt = 0.75

with adjustments one might expect for a surface that is reluctant to permit as much stream-wise

scattering of reflecting molecules.
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Figure 2.11: Comparison of boundary layer velocity profiles for component Vx at a distance along
the plate of 10mm with αn = 1.00, σt = 1.50.
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Figure 2.12: Comparison of boundary layer velocity profiles for component Vy at a distance along
the plate of 10mm with αn = 1.00, σt = 1.50.

2.1.4.4 Conclusions of CL Adjustment

Having determined that the generation of reflected thermal velocity components does not

satisfy the necessary condition of isotropy with respect to the surface tangential directions, a minor



www.manaraa.com

95

re-derivation of the algorithm was made in order to ensure said isotropy is maintained. Additionally,

a slight oversight that caused the original algorithm to function incorrectly for tangential momentum

accommodation coefficients greater than unity was addressed.

These improvements were shown to work for all conditions by comparing analytically–evaluated

CL distributions with numerically generated distributions. A model problem involving hypersonic

flow of a flat plate was then used to test the implementation of the corrected CL algorithm in

DSMC. The results of these computations, when compared with computations of the same prob-

lem available in the literature as well as with a published experiment showed that there was little

change in boundary layer profiles when σt < 1, but significant change for σt > 1. It is likely that

the nature of the computations, being 2D, prevented the former cases from exhibiting a difference

between original and corrected CL. A 3D computation in which all three components of velocity

within the boundary layer are compared would likely show these expected differences.

This analysis does not attempt to validate the CL model itself, nor choose appropriate ac-

commodation coefficients for it for any problem. It instead is intended to raise the question of

correctness in the application of gas-surface interaction models when applied in a simulation con-

text such as DSMC.

2.1.5 Schamberg

A typical extension of the standard diffuse scattering kernel includes a specular compo-

nent in addition to the standard diffuse component. Although this model is often termed the

Maxwellian model, other models incorporate some degree of specularity which still depend par-

tially on Maxwellian diffuse scattering or something similar. The CL model can recover a fully

diffuse reflection when σt = αn = 1, and naturally introduces some specularity when those param-

eters are less than unity. A kernel introduced by Schamberg [63, 64] attempts to take this concept

further by not only being quasi-specular but also defining a region of probable reflection centered

on an incidence plane lobe angle θc as shown in Figure 2.13. The kernel assumes that all incident

molecules enter at the same speed and all re-emitted or reflected molecules leave the surface at
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Figure 2.13: Schamberg wedge angular scattering kernel shown in the incidence plane. The reflec-
tion lobe represents the probability of a molecule leaving the surface at the angle θ′r.

another constant speed.

There are some ambiguities regarding this model that stem from Schamberg’s original pre-

sentation in Ref. [63]. The first is that the model is often said to be limited to free-molecular flow

as it depends on individual molecules’ interactions being independent from others, however there

is no argument that properly supports this claim. Schamberg makes the remark:

“... it seems reasonable to require that θr ≥ θi since there is a general tendency
for the surface interaction towards obliterating the effect of past history of the
molecules, i.e., a trend towards diffuse reflection.” Ref. [63].

which may have been interpreted as implying the model is only free-molecular5 when its implication

seems to be that reflections appear to have a degree of independence from the local gas environment.

The next ambiguity is in the interpretation of Schamberg’s original description of the geometry

of reflection. The direction of reflection is selected from an angular kernel given by a cosine

distribution. However, the parameters of the kernel may have different meanings depending on

whether the reflection is assumed to be truly 3D (cone) or if it is a 2D incidence plane-only reflection

that must be given an azimuth angle (wedge). Schamberg explains that molecules are “reflected in
5 Note that Schamberg’s notation uses θr as the central beam angle, and φ0 as the half-width. These are denoted

θc and φL in this treatment, respectively.
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a conical or wedge-shaped beam having a half-angular width denoted by φ0”. Much of the Schamberg

model seems to have been formed by choosing some mathematical treatment to fit observations

and thus suffers from a lack of rigor (Imbro et. al refer to it as “artificial”[32]). Nevertheless, it is a

well-known model that serves to elucidate some of the challenge of creating and implementing GSI

models at the engineering level. It seems reasonable to provide implementations for the Schamberg

model in both its possible interpretations: Cone and Wedge.

2.1.5.1 Schamberg Wedge

In the wedge formulation, the reflection kernel should be considered to describe directions

within the incidence plane only. The reflection plane may naturally be different from the incidence

plane. The wedge version assumes that the angular kernel is the result of a projection of the true

reflection direction into the incidence plane, illustrated in Figure 2.13 6 . The Schamberg kernel is

f(θ′r) =


1 + cos

(
π

φL
∆θ′

)
if −φL ≤ ∆θ′ ≤ φL

0 otherwise

(2.43)

When this kernel is applied in the Wedge formulation, ∆θ′ = θc − θ′r is the angular distance of the

reflected velocity vector from the most probable direction, or center of the lobe, θc. The actual

direction of a reflected molecule in the incidence plane is θ′r, which must be within the lobe of

half-width φL centered on θc, measured from the surface normal direction. The vector c′r is the

projection of the actual reflected velocity onto the incidence plane. The unknown quantity in

Equation 2.43 is the central reflection angle (lobe center angle) θc. Schamberg provides an average

relation between this angle and the incident angle which is

sin(θc) = sinν(θi) , ν ≥ 1 (2.44)

where ν is a parameter that controls the weighting of specular and diffuse components. The

parameter ν adjusts the degree of specularity, with ν = 1 corresponding to purely specular where
6 One reason for this is that traditional laboratory experiments may use a “2D detector”, i.e., a detector that only

detects impacts from molecules in a small slice of the azimuthal reflection space, thereby giving only a planar picture
of the molecules’ reflected distributions.
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θi = θc and ν → ∞ corresponding to fully diffuse, where θc = 0, independent of θi. Necessary

parameters for implementing Schamberg reflection are ν, φL and the effective reflected surface

temperature, the latter of which can be determined from accommodation models and is used to

select a reflected speed cr. The choice of speed is not obvious, however. The method recommended

by Moe [49] assumes the same speed for all reflections on a given type of surface. This choice, which

assumes a constant reflection speed with only the direction changing, is the classical definition of

the Schamberg model described by Schamberg [63] and Imbro et al. [32]. The reflected speed is

given by

cr = ci

√
1 + α

(
Ts

Tk,i
− 1

)
(2.45)

where Ts is the surface temperature, Tk,i is the kinetic temperature of the incident molecule and

the thermal accommodation α can be either a constant or determined via another method such as

the Goodman model [27, 26].

The Schamberg wedge model gives an angular scattering in the incidence plane only. However,

unlike the CL kernel, there is no legitimate rule for projection of the tangential component Vr

into the surface plane. This is because there is no inherent dependence on accommodation or

of individual surface-plane incident velocity components. The Schamberg kernel, Equation 2.43,

describes reflection in terms of a projected angle only. If the reflection plane is said to be arbitrarily

oriented azimuthally, as was allowed for the CL analysis, the possibility exists for a molecule to

reflect in a direction that is on the same side of the surface normal in the incidence plane. This

event corresponds roughly to the cases where σt > 1 in the CL model (Figure 2.5) but is given

by the diffuse limit (ν → ∞, φL = π) of the Schamberg angle relation of Equation 2.44. That

is, the reflections of the Schamberg kernel may only permit back-scattering when the lobe width

and central lobe angle are such that part of the reflection lobe exists on the back (left) side of the

surface normal, in the incidence plane. Although the surface should be considered isotropic in the

tangential directions, choosing an azimuth angle at random from a uniform distribution over the

full range of [0..2π] without consideration for how the incidence plane reflected angle distribution
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is affected will fail to produce the Schamberg scattering kernel.

The way in which the azimuth angle is chosen for the CL algorithm is such that the angle

represents the component of scattering from a diffuse kernel only, where the contribution from

the incident tangential velocity is then superimposed to, in effect, “push” the reflected velocity

in a direction that is preferred based on the model’s accommodation parameters. The Schamberg

angular kernel has no such means to do this as it is only defined for a single planar reflection. Thus,

it is necessary that any generation procedure chooses an azimuth that also satisfies the planar kernel.

A discussion of this problem naturally does not assume that the incidence and reflection planes

are coplanar, as this is rarely physically true for non-purely specular reflections. The geometry

of a generalized reflection is shown in Figure 2.14, where primed variables denote incidence plane

projections of actual reflected variables. The projection of the true reflected velocity cr onto the

incidence plane is shown as a dashed line segment. The planes each contain the surface normal but

the reflected plane is rotated by inter-azimuth angle γir from the incidence plane.

A reflecting molecule must be allowed to leave the surface at velocity cr, where cr is not

necessarily in the incidence plane. However, the Schamberg kernel must still be satisfied. The choice

of the components of cr must be made such that c′r (the projection of cr onto the incidence plane)

forms an angle with the surface normal (deemed θ′r) which is distributed according to Equation 2.43,

rather than the actual reflection cone angle θr.

What is clear is that the reflected azimuth angle γr must be chosen prior to enforcing a relation

between it and θr and θ′r. The relation of of γr to the other azimuth angles is shown in Figure 2.14

where the surface tangential reflected velocity Vr is shown projecting onto the incident tangential

plane and the inter-azimuth angle γir is defined as being positive from the incidence direction

t̂i. If this relation is established, then it is acceptable to select γr from a uniform distribution in

an appropriate range. The relation between θr and θ′r is established by first noting that both the

incidence and reflection planes contain the surface normal. This implies that the normal component
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Figure 2.14: An illustration and definitions of a general surface reflection that features the incidence
and reflection planes.
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Figure 2.15: A top-down view of Figure 2.14 showing the surface plane in which tangential velocity
components are projected and giving the definitions of relevant azimuth angles.
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of reflected velocity in both planes must be identical and is given by

ur = u′r = cr cos(θr) (2.46)

where cr is the magnitude of the true reflected velocity determined from Equation 2.45. From

Figure 2.15, the following relation also exists:

V ′
r = c′r · t̂i = Vr cos(γir) (2.47)

where γir = γi − γr is the inter-tangential reflection azimuth angle. And finally, from additionally

visible geometry, the relations Vr = ur tan(θr) and V ′
r = u′r tan(θ′r) allow the final definition of θ′r

in terms of appropriate variables as

tan(θ′r) =
Vr cos(γir)
cr cos(θr)

= tan(θr) cos(γir) (2.48)

When the reflection lobe is wide enough, and the center is positioned close enough to the surface

normal, it is possible that molecules may reflect “back”, or to the left of n̂ in Figure 2.13. Otherwise,

they will reflect “forward”. Each of these cases, as well as the case where a reflection is perfectly

orthogonal to the incidence plane must be treated differently for the selection of γir. When θ′r > 0,

the reflection is forward, and the viable range is that which covers the forward half of the surface

plane: γir ∈ U(−π/2, π/2). When θ′r < 0, the reflection is backward, and the viable range is the

other half of the surface plane: γir ∈ U(π/2, 3π/2). In the rare case of θ′r = 0, there are only two

possible, viable values for γir: −π/2 and π/2. This occurrence also implies that the calculation of

the true cone angle θr will fail, as cos(γir) = 0 at this location 7 . However, the true meaning is that

any value of θr will suffice. Lacking any rule for how to choose θr in this situation, a concession

will be made that will instead prevent γir from ever exactly equaling the problematic values. If it is

detected that θ′r = 0, γir should be chosen(uniformly) to be either π/2(1− ε) or π/2(1+ ε), where ε

is a prescribed perturbation that should be given as a fraction or percentage of π/2. This method

becomes less desirable of a solution as the Schamberg parameter ν becomes large, thus pushing the

kernel towards fully diffuse scattering were θc = 0 is the most probable reflection direction. In this
7 The effect of a cosine in the relation of Equation 2.48 also enforces the condition θr ≤ θ′r.
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case, using Schamberg interaction is already inadvisable, however, as a standard diffuse model is

more efficient. The full algorithm is a follows:

(1) Determine the incidence cone angle: θi = cos−1(−ĉi · n̂), where both ĉi and n̂ must be

unit vectors expressed in the same coordinate system – either the inertial/computational

or surface-local system.

(2) Determine the tangential plane incidence azimuth angle: γi = tan−1
(

wi
vi

)
where vi = ĉi · t̂1,

wi = ĉi · t̂2).

(3) Calculate the reflected lobe center angle θc using Schamberg’s relation (Equation 2.44).

(4) If thermal accommodation α is not specified as a constant, calculate it from an appropriate

model.

(5) Calculate the reflected speed cr from Equation 2.45.

(6) Generate the incidence plane projected angle θ′r by sampling from the Schamberg kernel

(Equation 2.43) in some fashion (likely the acceptance-rejection method).

(7) Generate the tangential plane inter-azimuth angle γir by sampling from the appropriate

uniform distribution, taking into account the sign of θ′r to restrict the possible range of

values to the appropriate half-plane as discussed earlier.

(8) Calculate the final azimuth angle: γr = γi − γir.

(9) Obtain the true reflected cone angle θr using Equation 2.48.

(10) Calculate the reflected components of velocity in the surface-local system:

ur = cr cos(θr)

vr = cr sin(θr) cos(γr) (2.49)

wr = cr sin(θr) sin(γr)
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(11) Transform the reflected velocity into the appropriate inertial/computational coordinate

system if necessary.

There is no direct way to obtain θ′r as the kernel’s cumulative density distribution function is

not explicitly invertible for θ′r. Thus, Step 6 is the most costly part of the algorithm. However,

when performing an acceptance loop, only values of θ′r within the lobe range need be considered as

f(θ′r) = 0 elsewhere. Thus, the acceptance procedure efficiency need not degrade as φL decreases.

An attempt to define a similar algorithm has been made by Zuppardi[76]. However, this

method appears incomplete and possibly erroneous as it does not extend into 3D, uses a random

reflected lobe width and random relational parameter ν, and the presentation lacks an appropriately

detailed explanation for many of the choices made. In the context of implementation in a numerical

simulation such as DSMC, the currently presented algorithm will generate exactly what is required

when parameters ν, α (or µ if the Goodman model is used), and φL are provided.

2.1.5.2 Schamberg Cone

The cone formulation appears as a more natural or intuitive description of a quasi-specular

reflection, and provides, by definition, all the information required to determine a reflection direc-

tion. Figure 2.16 shows the cone of reflection of half-width φL with its central angle at angle θc.

The actual reflected direction is shown as the velocity cr. If the cone reflection angle θr > 0,

the reflected direction will not be in the incidence plane. The angular kernel of Equation 2.43 now

describes the distribution of the true cone angle θr (replacing ∆θ) as shown in Figure 2.16. Note

that the central axis of the cone (offset from the surface normal by central angle θc) lies in the

incidence plane and the plane normal to this axis forms circle (the cone’s base) within which an

azimuth angle can be chosen uniformly. This cone base plane is depicted in Figure 2.17 where the

angles γi and γr now refer to base-plane azimuth angles.

To generate reflected velocities, the cone is first considered to be upright in that its axis is

collinear with the surface normal vector, with its base parallel to and above the surface. The re-

flected velocity cr in the base-plane’s coordinate system (spanned by basis vectors in each tangential
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Figure 2.16: Reflection geometry for the Schamberg Cone formulation.

ci

γr

t̂i

t̂1

t̂2

t̂p

c′r
γi

Figure 2.17: Schamberg Cone azimuthal geometry definitions in the cone base plane

direction of the surface t̂1, t̂2 as seen in Figure 2.17) is then written as

c′r = c′r cos(γr)t̂1 + c′r sin(γr)t̂2 (2.50)

where the base-plane reflected speed and normal direction velocity component are, respectively,

c′r = cr| sin(θr)| (2.51)

u′r = cr cos(θr) (2.52)

and the total reflected speed cr is obtained from Equation 2.45. This forms a pre-rotated velocity
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of

c′r = cr| sin(θr)| cos(γr)t̂1 + cr| sin(θr)| sin(γr)t̂2 + cr cos(θr)n̂ (2.53)

This velocity then undergoes the following rotations to place it in the proper orientation in the

surface frame:

cr = Q3(γi)Q2(θc)c′r (2.54)

where rotations are defined as

Q2(θc) =


cos(θc) 0 sin(θc)

0 1 0

− sin(θc) 0 cos(θc)

 (2.55)

Q3(γi) =


cos(γi) sin(γi) 0

− sin(γi) cos(γi) 0

0 0 1

 (2.56)

The cone’s axis remains in the incidence plane but the reflected velocity may be anywhere within

the cone. The complete procedure is as follows and starts with the same steps as the Wedge model

but differs beginning at Step 6:

(1) Determine the incidence cone angle: θi = cos−1(−ĉi · n̂), where both ĉi and n̂ must be

unit vectors expressed in the same coordinate system – either the inertial/computational

or surface-local system.

(2) Determine the tangential plane incidence azimuth angle: γi = tan−1
(

wi
vi

)
where vi = ĉi · t̂1,

wi = ĉi · t̂2).

(3) Calculate the reflected lobe center angle θc using Schamberg’s relation (Equation 2.44).

(4) If thermal accommodation α is not specified as a constant, calculate it from an appropriate

model.

(5) Calculate the reflected speed cr from Equation 2.45.
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(6) Generate the true cone angle θr by sampling from the Schamberg kernel (Equation 2.43)

in some fashion (likely the acceptance-rejection method).

(7) Generate the cone base-plane azimuth angle γr by sampling from a uniform distribution

U(0, 2π).

(8) Create the unrotated reflected velocity using Equation 2.53.

(9) Rotate the velocity using Equation 2.54.

(10) Transform the reflected velocity into the appropriate inertial/computational coordinate

system if necessary.

Whether the cone formulation is truly “correct” is unclear. Particularly, the choice of using a

uniform distribution for γr is rather arbitrary. Under the assumption of a cone angle, however,

a uniform distribution seems appropriate. Should more analysis or experimental data become

available in the future to validate Schamberg’s kernel and its interpretations, these implementations

will become more pertinent.

2.1.6 Custom Incidence Plane Projected Angular Kernel

The velocity generation algorithm proposed for the Schamberg Wedge formulation can be

generalized to work for any angular kernel. If future experiments, analysis or spacecraft flight data

lead to new angular kernels, the wedge procedure can generalize them to any isotropic surface

and provide an implementation in code. This would allow custom reflection kernels to be used

in DSMC, further enhancing the overall fidelity of rarefied gas flow over real engineering surfaces.

Either analytical or numerical kernels could be provided, and Step 6 of the Wedge algorithm in

Section 2.1.5.1 would be replaced by a sampling procedure for these kernels, rather than for the

Schamberg kernel.
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2.1.7 SESAM for Accommodation

Many GSI models are composed of a scattering kernel and an accommodation model that

acts as input to the kernel in the form of an effective reflected temperature. Sentman reflection

makes inclusion of thermal accommodation obvious to implement. Schamberg reflection can include

thermal accommodation if desired when choosing the reflected speed (Equation 2.45). Cercignani-

Lampis includes more complicated relations between both thermal and momentum accommodations

and the reflection kernels. Providing accommodation coefficients can be difficult to do accurately

without experimental evidence to support a certain choice of a coefficient. Until Goodman’s thermal

accommodation model [27, 26], most, if any values for thermal accommodation coefficients were

provided from analysis of what little experimental and in-situ data that were available. Goodman’s

model is based on a representation of surfaces as a 2D matrix of hard sphere molecules into which

incident molecules are adsorbed and from which they are later re-emitted. It introduces more

detailed surface physics into the problem of determining accommodation. The model predicts the

thermal accommodation coefficient as a function of incident and resident molecular mass ratio.

Equation 2.58 is Goodman’s formula for determination of thermal accommodation, with a steric

factor (the incidence angle θi measured from the surface normal as shown in Figure 2.13) included,

and the parameter

µ = mg/ms (2.57)

is the ratio of the mean molecular mass of incident molecules to the mass of molecules comprising

the surface. However, most of these results are based on experimental correlations where clean

surfaces (i.e. not “engineering” or real surfaces) were used.

αn =
3.6µ cos(θi)

(1 + µ)2
(2.58)

Despite the Goodman model being in use since it was introduced, it has not been sufficient for

application to real surfaces or to all gases and conditions. Even when restricted to atomic oxygen

(a common adsorbate), it fails to accurately predict the drag coefficients measured on certain orbits

by certain spacecraft. The Semi-Empirical Satellite Accommodation Model (SESAM), introduced
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by Pilinksi [57, 58], gives improved results over Goodman for accommodation of atomic oxygen,

and possibly for other adsorbates 8 . This model requires inputs of bulk flow incidence energy and

partial pressure of the adsorbate and is restricted to use in a Maxwellian diffuse scattering kernel

only. For simulations involving atomic oxygen where thermal accommodation is required to be

known (such as most low-earth orbital problems between 200 and 400 km in altitude), SESAM is

a useful new model.

The implementation of SESAM as it is presented by Pilinski is for flow with a defined stream

or characteristic velocity and assumes that the other inputs such as normal incident energy and

pressure are given in some averaged context. SESAM is formulated under the assumption of a

traditional drag model being sufficient and applying the resulting accommodation coefficient to

the entire object. In order to use SESAM in a general class of problems in a DSMC code (a

requirement for performing dynamic analysis of objects in rarefied flow without restriction on

geometry or other conditions), it must be adapted to apply in the context of an arbitrary surface

element where only local flow information is available. This implies that, in real flow, different parts

of an object’s surface may experience different local flow properties and thus may evolve differently

in terms of how they are affected by adsorption. Additionally, a properly generalized code may only

specify boundary conditions, and not internal flow structure or state. Therefore, no assumptions

of characteristic flow should be made.

An element-wise version of SESAM can be created by first noting what the model’s parameters

are and where they apply. SESAM requires four parameters:

• Eb : Binding energy of the surface [J]. Incident molecules whose normal kinetic energy is

less than Eb are considered for possible adsorption on the surface.

• ms : Mass of a surface molecule [kg]. The aforementioned ratio µ is used in the Goodman

function, Equation 2.58, which is used by SESAM to determine a baseline accommodation

coefficient.
8 Verification data is not yet available for other adsorbates.
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• KL,o , KL,f : Lower and upper range orbital eccentricity empirical fit parameters for a

given adsorbate (e.g. atomic oxygen) [Pa−1]. These are used to calculate the Langmuir

fitting constant KL, given by

KL = s0KL,o +KL,f (2.59)

where s0 is a “sticking coefficient”.

The sticking coefficient s0 is originally determined by Pilinski using analytical representations of

energy distributions in free-molecular flow as the ratio of low-energy incident molecules to all pos-

sible energies in the flow. It is a probability of sticking to the surface based on a comparison of

energy and not the fraction of incident molecules that have already stuck. This is not a valid way

to determine this ratio in an element-wise formulation. Instead, since each surface element experi-

ences actual impacts by simulation particles, the sticking coefficient can be directly determined by

comparing the total number of incident molecules with low (i.e. less than Eb) normal kinetic energy

to the total number of all molecules that have impacted it over the course of the simulation, as

these records are easily kept for each element. Similarly, the current incident-only partial pressure

pi on the surface element should be available. From this pressure, and the element-wise Langmuir

parameter KL, a surface coverage parameter θ′ is determined by using

θ′ =
p0KL

1 + p0KL
(2.60)

where the pressure-proxy p0 is

p0 =
−pi

k
(2.61)

and k is Boltzmann’s constant. It is assumed that the definition of surface pressure is such that

pi < 0.

The final procedure for calculating thermal accommodation with element-wise SESAM is as

follows, and begins when a surface element detects an impacting particle:

(1) Calculate the incident normal kinetic energy Ein = 1/2mgc
2
in, where incident normal speed

is cin = ci · n̂ and ci is the incident velocity.
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(2) Record and update the number of low-energy and total impacts by testing

if(Ein < Eb)

Nlow = Nlow + 1

end if

and also:

Ntot = Ntot + 1

These numbers are kept as a cumulative record for each surface element.

(3) Obtain the sticking coefficient as

s0 =
Nlow

Ntot
(2.62)

(4) Calculate the Langmuir parameter using Equation 2.59.

(5) Calculate the pressure-proxy with Equation 2.61, assuming pi is available for this molecule’s

species9 .

(6) Obtain the Goodman baseline accommodation using Equation 2.58 and using the mass of

the actual impacting molecule mg instead of the mean mass in Equation 2.57. Call this

αn,g.

(7) Calculate the coverage parameter θ′ from Equation 2.60.

(8) Calculate the final value of thermal accommodation as

αn = (1− θ′)αn,g + θ′ (2.63)

(9) Determine the effective reflected translational temperature from Equation 2.20.

Whether this version of SESAM designed for element-wise operation properly recovers the results

seen in the original, mean-value version has yet to be determined. Once this verification has been

performed to satisfaction, application of SESAM in DSMC can be done with more confidence.
9 The current value of macroscopic incident pressure pi should be taken as a mean value over the most recent

sample interval only, like other macroscopic variables in DSMC. This slightly contrasts with the tracking of Nlow

and Ntot which are summed over the entire computation. The reason for the the latter parameters being absolutely
cumulative is that s0 aims to provide some modeling of the surface becoming “dirtied” with adsorbing molecules,
permanently changing its accommodation.
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2.1.8 Blended Surface Models

One common deficiency in current DSMC codes is the lack of options for specifying surface

models. Voldipar provides the user the option of creating custom surface models that use super-

positions of the various models outlined in this section. For each surface element defined in the

simulation, a surface interaction model may be specified by providing a list of models to use, with

their appropriate parameters, and a corresponding list of weighting coefficients wj ∈ (0..1]. The

weighting blends the models for the surface such that model j will be selected with probability wj .

For example, a surface could be specified as 30% Maxwellian standard diffuse with SESAM thermal

accommodation, 50% CL with full thermal accommodation and partial momentum accommodation

(αn = 1.0, σn = 0.8, σt = 0.35) and 20% Schamberg with ν = 5.0 and partial thermal accommo-

dation (αn = 0.3). This configuration would be set with w1 = 0.30, w2 = 0.50, w3 = 0.20 where

it is necessary for the sum of weighting factors over j to be unity. To select a surface model, a

uniformly distributed random number Rf ∈ (0..1] is generated and its location with respect to the

limits of each region is determined. The models must be arranged in some manner corresponding

to space in the range (0..1] as shown in Figure 2.18.

SchambergMaxwellian Cercignani−Lampis

w3w2w1

Rf

0

Figure 2.18: Selection of a surface reflection model from the example model profile consisting of
three different models, each with a different weighting specified by the user. The CL model is
shown to be selected.
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2.2 Summary

Regardless of how spacecraft dynamics is represented, it remains important to understand

how molecules interact with surfaces of solid bodies in the stream. With this motivation in mind,

Voldipar was created to allow for direct insertion of gas-surface interaction (GSI) models in a proper

manner. Rather than forcing the user of the code to attempt to approximate the complexities of

a given GSI model by making use of a few commonly available parameters (e.g. surface overall

temperature), the goal is to provide any information that a model would require to the user (e.g. gas

velocity distributions or macroscopic variables near the surface), and to allow the user to provide

additional information to the code (e.g. separate surface and effective reflection temperatures).

With complete control over the contents of a DSMC code, GSI models can be investigated more

thoroughly and accurate models of real engineering surfaces under more realistic conditions may

be made.
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Chapter 3

Rigid-Body Dynamics: Simple Cases and Initial Models

Much of the effort expended to create reliable, accurate and friendly rarefied gas dynamics

simulation tools such as DSMC would be wasted without a greater goal. In this work, that goal

is the improvement in modeling and prediction of the motion of spacecraft and orbital debris.

Understanding the effects of dynamic forces on objects immersed in a fluid remains an obstacle

to obtaining accurate models of such objects’ natural motion. In the specific regime of rarefied

gas flow, as is seen for spacecraft and orbital debris in low-earth orbit and beyond, most modeling

makes little attempt to capture complicated motion beyond very general parameterization involving

drag or ballistic coefficients and the imposition of effective geometric properties. With the help of

modern computational tools such as DSMC, the fidelity with which spacecraft dynamics can be

modeled can and should be increased.

Prior to attempting to solve the greater problem of modeling gas dynamic forces on rigid

bodies in rarefied environments–which is the subject of Chapter 4–some attention should be paid

to understanding the type of dynamic motion experienced by said bodies and what challenges are

present. A simple approach to this class of problems can start with the assumption of a 2D body

in free-molecular flow with classical atmospheric equations of motion to serve as an appropriate

example case. No other restrictions on body geometry should be necessary. Additionally, one set

of general conditions that are common in low-earth orbit will be imposed to limit the analysis

to a tractable parameter space. Extensions to three-dimensional geometry and higher dimension

parameter and state spaces should follow from this simple model. The restriction to 2D allows for
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analysis using the current state of Voldipar, once the basic free-molecular results have provided

proof of satisfactory framework.

3.1 2D Dynamic Equations of Motion

The equations of motion for a 2D rigid body in rarefied flow are first written in state-space

form in the body-fixed coordinate frame shown in Figure 3.1. In this formulation, the body is

assumed to be moving at a constant orbital speed of V∞ without the direct influence of gravity.

The center of mass is assumed to follow a constant trajectory with respect to the inertial coordinate

frame fixed to the earth, reducing the motion to a single degree-of-freedom rotation about the center

of mass. A 2D computational/inertial frame is constructed where the stream velocity is always

aligned with the computational x-direction. These assumptions create a weather-vane behavior

where the rigid body is pinned and rotates about its center of mass so that the equation of motion

is written as
dα̇(t)
dt

=
M(α(t), α̇(t))

Iyy
(3.1)

The free-stream Knudsen number Kn and Mach number Ma are assumed constant, with α(t) as the

angle of attack and M is the sum of all aerodynamic moments acting on the body. The rotation

rate of the body frame with respect to the computational frame is α̇(t) so that q(t) = α̇(t), where

q(t) is typically the body-frame pitch rate. Equation 3.2 gives the state-space form with the state

vector s = [α(t) α̇(t)]T.

ṡ =

 α̇(t)

1
Iyy
M(α(t), α̇(t))

 =

 s1

1
Iyy
M(s1, s2)

 (3.2)

The aerodynamic moment M may be a function of any number of independent variables in the

problem, though is expected that M will depend mostly on α.

Running a simulation of these dynamics requires that Equation 3.2 to be integrated in time

with initial conditions s0 specified, and the general flow or environment conditions to be defined

a priori. The free-stream conditions Ma , T∞, Kn are assumed constant, as are the object surface
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temperature TS and gas properties. Furthermore, the object’s geometry and mass properties must

be given. With these parameters and the object’s geometry and mass properties specified, the only

remaining unknown is the fluid moment, which must be computed as a function of the state.

To compute M requires information extracted from a numerical simulation or experiment.

The simplest solution is to integrate the equations of motion in time at each time step of the flow

field simulation. This method will be referred to as “in-loop” (also called “coupled-field”). In the

general case, the simulation may be any relevant fluid model (e.g. Navier-Stokes for continuum

fluids) that can be formulated to take the state as an input. For the case of rarefied (Kn & 10)

and continuum-rarefied transition (0.1 ≤ Kn ≤ 10) flows, the simulation might employ DSMC.

Whichever method is used for obtaining fluid forces in-loop, the cost is almost always too high for

practical simulation purposes. What is required is a method of approximation of fluid forces that

can be used in place of direct in-loop simulation. In the example of classical aircraft dynamics this

is accomplished with a Taylor series expansion about a single point in order to reduce fluid effects

to a set of constants. When this assumption cannot be made, as is the case almost everywhere

outside of fixed-wing atmospheric aircraft flight, alternative methods must be explored.

A free-molecular gas (Kn > 100) where an analytical formulation can be used to determine

M is used for a simplified initial analysis. This enables an analytical approach, presented in

Section 3.2, for the body forces and moments as a function of state. This will be referred to as the

source data used as the input to the approximation methods. A result of this formulation is that the

methods remain independent of the source data or the conditions under which they were computed

or otherwise provided (including experimental data). Therefore, any method of approximation

determined to be appropriate while using free-molecular source data should be equally viable for

continuum flow source data.

3.2 Free-Molecular Source Data

Analytical force equations are available (e.g. [3]) for the free-molecular flow assumption. The

2D rigid body is represented by a set of points in a plane with the line segments between these
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points defined in a winding order such that each segment has an outward-pointing normal vector

as shown in Figure 3.1. The force on a segment is determined by examining the impacts and

Figure 3.1: 2D airfoil geometry with body-fixed coordinates and angle of attack α > 0.

reflections of molecules on each line segment or panel. The equations for pressure and shear on a

panel are determined for a prescribed free-stream velocity and a standard diffusive surface reflection

model. The equations for incident pressure and shear are:

pinc =
ρ

2β2
√
π

[
−sVne

−(sVn)2 +
√
π (1− erf(sVn))

(
1
2

+ s2V 2
n

)]
(3.3)

τinc =
ρs

√
1− V 2

n

2β2
√
π

[
e−(sVn)2 −√πsVn (1− erf(sVn))

]
(3.4)

nr = n∞

[
T∞
Tr

] 1
2 [
e−(sVn)2 −√πsVn (1− erf(sVn))

]
(3.5)

pr =
nrmg

4β2
r

(3.6)

β = (2RT∞)−
1
2 (3.7)

s = β|V∞| (3.8)

Vn =
V∞ · n̂
|V∞| (3.9)

Vp =
V∞ · p̂
|V∞| (3.10)

The variable β is the reciprocal of the most-probable molecular speed of the incident gas. The

reflected temperature Tr is distinguished from the true surface temperature TS since gas-surface
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accommodation models may be used to derive a value of Tr that is not equal to TS . Although this

formulation allows a distribution of temperature over the body surface, here TS is constant. For

the diffuse reflection model, there is no preferred reflection direction, thus τr = 0. The resulting

values of pressure and shear on each panel are given by

p = −(pinc + pr) (3.11)

τ =



−τinc for Vp < 0

0 for Vn > 0

τinc otherwise

For consistency, pressure is defined as positive along the panel normal direction or “outward”.

There is also a natural ambiguity in the sign of the shear stress that is corrected by defining τ

with the different cases shown in Equation 3.12. A difference to note, however, is the case of

Vn > 0. This case corresponds to a backward-facing panel with respect to the oncoming stream

(the sample panel shown in Figure 3.1 is backward-facing, for example). For free-molecular flow,

a backward-facing surface is in the aerodynamic shadow of the flow, and without intermolecular

collisions, the only impacts with the surface will occur due to thermal back-flow. With no preferred

direction imposed from the stream, these impacts cannot contribute any mean shear stress for the

same reason there is no reflected shear in a diffuse model.

For a panel i, the surface stress vector is then defined as σ
(p)
i = [pi τi]T, where the p

superscript indicates that it is expressed in the local panel coordinate system. This vector must

expressed in the body-fixed coordinate system (Figure 3.1), multiplied by the panel length and

summed over all panels on the body (Equation 3.12) to obtain the overall force vector in body

coordinates. Body moment is computed according to Equation 3.13, where xci is the center of

panel i and xref is a user-defined reference point (e.g. the center of mass of the body, xcm), both

expressed in computational coordinates.

F (b) =
∑

i

F
(b)
i =

∑
i

`i(Bi)b
p σ

(p)
i (3.12)
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M =
∑

i

[
(xci − xref)× F

(b)
i

]
(3.13)

(Bi)b
p = [p̂i n̂i] (3.14)

For the purpose of further implementation, this process is represented by the calling of the function

M(s, t) as shown in Equation 3.2. This function, X(s, t), Z(s, t), and any other functions of the

state variables and fluid dynamics are source functions. The dynamics discussed in this investiga-

tion do not require the force source functions X(s, t) and Z(s, t), however, they are included for

completeness.

Using this method, the pitching moment, as a function of α, is calculated for a 1m chord

NACA-0012 airfoil section using Equation 3.13, for a range of Mach numbers, as plotted in Fig-

ure 3.2. The conditions shown in Figure 3.2 are for Earth’s atmosphere (assumed to be pure

diatomic nitrogen) at 155.5 km and TS = 300 K with the moment reference location at the cen-

ter of mass xcm = (0.4205, 0.0000) m from the leading edge. Mach numbers Ma =14.97 and Ma

=24.18 correspond to circular orbits at Kn = 100 and Kn = 1, respectively. For angle of attack

in the approximate range −10deg < α < 10deg, the moment experienced by the airfoil causes it to

destabilize or diverge. The magnitude of the moment in this region increases as Ma increases. All

other angles, however, cause a restoring or zero moment. Details of this behavior are examined in

Section 3.3.1.
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Figure 3.2: Pitching moment M(α) of a NACA-0012 airfoil with 1m chord in free-molecular flow
at various free-stream Ma values.

3.2.1 Treatment of Angle of Attack Rate

The source functions, as implemented using the free-molecular equations, must be functions

of the declared state variables. The incident velocity component Vn is related to the first state

variable α. The angular rotation rate of the object, α̇ (which is assumed to remain constant for

this formulation), is introduced by replacing the incident velocity on each panel with an effective

velocity Ve for that panel, defined as

Ve = V∞ +


0

α̇

0

× (r(c) − x
(c)
ref) (3.15)

where r(c) is the location of the center of the panel in the computational frame. The state variable

α̇ remains constant over an integration time step. Each panel’s effective velocity is the sum the free-

stream velocity and the instantaneous velocity derived from the motion of the panel as it rotates
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about the given reference point xref at a rate α̇. This is sometimes described as a transpiration

boundary condition and is implemented in continuum computational fluid dynamics as a cost-

effective way to simulate moving boundaries [24, 61, 59]. For the general formulation presented

now, use of transpiration to model rotation will be assumed to be acceptable.

3.3 Free-Molecular Simulations

Test cases involving a 1m chord NACA-0012 2D airfoil in free-molecular flow were performed

for various initial conditions for both the in-loop baseline and the Sliding Taylor method of ap-

proximation. The airfoil is assumed to be comprised of a homogeneous material of mass-density

ρ. Source function M(α) and moment of inertia Iyy are calculated with a reference location being

the airfoil’s center of mass of xcm = (0.4205, 0.0000) m. As the dynamics are essentially flat-earth

aircraft equations of motion in the absence of gravity, it was useful to examine the in-loop natural

response of the body when starting from high and low angles of attack and to inspect the move-

ment of the center of pressure to ensure that the responses conform to expected general stability

behavior. The Sliding Taylor approximation is then integrated under the same conditions and the

quality of the new, approximated dynamics are compared to the in-loop baseline. For all cases, the

simulation conditions that remain constant are given in Table 3.1. These conditions, taken from the

NRLMSISE model [56], correspond to an object in a circular orbit at an altitude of approximately

155.5km. Molecular nitrogen is dominant and thus, is assumed to be the only species.

If the characteristic length of the problem is defined as the chord length, then the mean free

path of the stream and overall system is λ∞ = 100m. From this definition, the free-stream number

density is determined, using the Variable Hard Sphere approximation [3], as

n∞ =
1√

2πd2
gλ∞

(3.16)

3.3.1 Free-Molecular Baseline Cases: Airfoil

The first case used to validate the free-molecular dynamics is given in Table 3.2 as Case

1. Integrating Equations 3.2 with in-loop evaluation of source functions over an interval of t ∈
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Table 3.1: Constant rarefied gas flow conditions and mass properties for all simulations of a NACA-
0012 2D airfoil section in molecular nitrogen (N2) at gas reference temperature of 273 K.

Variable Symbol Value Unit

Mach number Ma 14.97
Knudsen number Kn 100
Stream temperature T∞ 655 K
Body surface temperature TS 300 K
Body moment of inertia about y Iyy 12.43 kg−m2

Gas molecular mass mg 46.5 ×10−27 kg
Gas diameter dg 4.17 ×10−10 m
Gas ratio of specific heats γ 7/5
Gas constant R 296.8 kJ/(kg−K)

[0, 2000] s gives the resulting oscillation seen in Figure 3.3a. This case starts with an initial angle of

attack that is within the diverging central region of M(α) as seen in Figure 3.2. The airfoil initially

rotates upward but quickly passes into the restoring range, causing a reversal of rotation direction.

It proceeds to oscillate about an angle offset of approximately ten degrees without apparent physical

damping for the remainder of the time interval. As the source functions impose a free-molecular

set of forces and moments, no fluid damping should occur. With no intermolecular collisions, there

is no net transport of momentum within the gas, thus preventing viscous damping. Due to the

geometry, a symmetrically-centered oscillation occurs. If Case 2 is simulated, the airfoil is given

some initial negative rotation, causing a symmetric oscillation that is centered about α = 0 as seen

in Figure 3.3b. The initial downward rotation allows the airfoil to start with enough momentum

to avoid an initial upward rotation and immediately settle into its dynamically stable motion.

Simulation was then performed for the higher initial angles of Case 3, shown in Figure 3.4a.

Another symmetric oscillation occurs. Since α0 now starts within the restorative range of M(α),

the airfoil immediately rotates downward. Enough moment is present to enforce a rotation past

α = 0, though a brief slowing occurs as the body re-enters the divergent region. Case 4 was then

simulated, in which an initial upward rotation of 0.5deg/s was added. Figure 3.4b shows the airfoil

initially rotating upward, but still enters a stable oscillation about α = 0 as the initial angular

momentum is not enough to cause an unbounded rotation. Although, a destabilization does occur
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Table 3.2: Case definitions: Initial conditions

Case α0 [deg] α̇0 [deg/s]
1 5.0 0.0
2 5.0 -0.5
3 25.0 0.0
4 25.0 0.5
5 25.0 2.0

when the initial rate is raised to 2.0 deg/s, as shown in the time histories of Case 5, given in

Figure 3.4c.

The dynamic stability exhibited by Case 1 can be examined by noting the location of center

of pressure as α changes. The center of pressure xcp changes as a function of the state (particularly

of α) and is given by

xcp = xcm − M

X2 + Z2

 Z

−X

 (3.17)

The movement of the center of pressure can be seen in Figure 3.5 where the center of mass remains

ahead of the center of pressure for most values of α. Angles within the divergent region lead to

the center of pressuring becoming located ahead of the center of mass. Figure 3.5 also shows the

consequence of symmetry with the center of pressure becoming identical to the center of mass at

α = 0. A deeper look at the dynamics begins by examining the state-space phase portraits with the

conditions of Table 3.1 as shown in Fig. 3.6. There are several dynamic features to note. The first

is the presence of periodic (in α) limit sets within which Lyapunov stable orbits exist. Each of these

regions exists at intervals of α = 2nπ, where n is any integer (only the region for n = 0 is shown in

Figure 3.6a). No value of α̇0 gives a stable trajectory for α = nπ, except for the origin (which is

an equilibrium). Saddle points exist that straddle neighboring stable regions located at α̇0 = 0 for

α = nπ/2. Figure 3.6b shows the central region in more detail, where some additional features are

visible. In this region, there exist limit sets that correspond to stable oscillations about the points

of α∗ = |α| ≈ 10.3276 deg with α̇ = 0. These points represent the boundaries of the restorative

region, to which trajectories that begin outside it converge. However, with enough energy in the
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(b) Case 2.

Figure 3.3: State variable time histories for cases with initial angles of attack within the divergent
region of M(α).

state, as exemplified by Cases 2 to 5, trajectories may pass these regions completely and instead

appear to oscillate about the the origin. The origin itself is an equilibrium, but also a saddle point

in that any small deviation in angle of attack (at α̇ = 0) will push the motion onto one of the

special, limited trajectories about α∗. The points at α∗ are somewhat difficult to characterize due

to necessarily high integration tolerances, but they appear to be unstable equilibria. The region

surrounding positive α∗ is given in detail in Figure 3.6c. By creating these phase portraits, these

dynamic characteristics become apparent. Information that was previously unavailable or merely

speculative yields more quantifiable conclusions.
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Figure 3.4: State variable time histories for cases with initial angles of attack within the restorative
region of M(α).
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(c) Region near unstable equilibrium +α∗.

Figure 3.6: Phase portraits for conditions of Table 3.1. The initial condition (IC) for each trajectory
is shown as a marker.



www.manaraa.com

127

3.3.2 Free-Molecular Baseline Cases: Arbject

The symmetry of the NACA-0012 is an attractive property to ensure simple physical motion

occurs as expected. To examine dynamic motion of more realistic objects, an object with asymmetry

was created. This arbitrary object, or arbject, is described in detail in Appendix C. The Arbject

used in this section has the parameters: p1 = [0.75 1.00], p2 = p1 + L[cos(θ) sin(θ)], R = 0.15,

d = 0.30, ω = 6, and the characteristic length is L = 0.75 with angle θ = 30deg (all lengths

are in meters). A simulation was performed for this object using the conditions of Table 3.1

with the appropriate changes for mass properties of the object being Iyy = 111.90 kg−m2 about

xcm = [1.1109 1.0708]m. Time histories of states for Case 1 are given in Figure 3.7. An oscillation
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Figure 3.7: State variable time histories for an Arbject using initial conditions of Case 1.

about α = 0 once again occurs, despite the geometry being asymmetric. Due to the low magnitude

of moment in these FM cases, this motion is expected. However, when a set of high angle initial

conditions are used, such as those given in Table 3.3, the Arbject rotates quickly upward in an

apparent swift departure from α = 0. Its oscillation is still stable, as it eventually returns to its

initial state. Whether the Arbject under these conditions has an equilibrium at the origin is an



www.manaraa.com

128

Table 3.3: Case 4 conditions

Symbol Value Unit

α0 150 deg
α̇0 0.1 deg/s
xcm [1.1109 1.0708] m
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Figure 3.8: State variable time histories for an Arbject using initial conditions of Case 4.

obvious question. With asymmetric geometry, there should be a nonzero moment acting on the

body at α = 0. The moment source function, given as Figure 3.9 shows the expected asymmetry,

and in fact, does indicate that there is a positive moment of 1.66 × 10−4Nm at α = 0, or roughly

5.3% of the maximum absolute value of momentum experienced in the range [−π..π]. This moment

is enough to initiate an upward rotation with initial conditions of the origin: α = 0, α̇ = 0. A

simulation of this motion is shown in Figure 3.10. A seemingly consistent oscillation occurs at

a low amplitude. Thus it appears that the origin in this case is not an equilibrium, but there are

trajectories near it that are likely stable limit sets. To examine these asymmetric dynamics in more

detail, a phase portrait was constructed for the Arbject under a variety of initial conditions, shown

in Figure 3.11. Somewhat similar to the phase portrait of the NACA-0012 airfoil, the Arbject
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Figure 3.9: Moment source function M(α) of the Arbject with α̇ = 0.
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Figure 3.10: State variable time histories for an Arbject using initial conditions of [α = 0 α̇ = 0].

appears to have a central region in which stable trajectories exist, centered around α = 2nπ.

However, the region is not symmetric about α = 0. Unstable trajectories still exist for high initial
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values of α̇, which is rather unsurprising when considering the lack of energy dissipation in FM

flow.
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3.4 Summary: Initial Dynamics Investigations

Although the examples cases presented here are simply some of many that could be chosen to

elucidate the challenges present in understanding the dynamics of rigid bodies subject to rarefied

and transition flow, other cases may be examined should the need arise. However, much of the

insight to be gained and tools to be developed in rarefied rigid body dynamics require special

methods like those presented in Chapter 4. Otherwise, analyses are limited to in-loop computations

where source functions are provided in real time during a time integration from DSMC (or equivalent

CFD methods), which is impractical.
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Chapter 4

Approximation Methods for Dynamics

Aerodynamics in rarefied gas environments typically focuses on the problems involved in

understanding how the gas itself affects a rigid-body immersed within it. Less often attempted,

however, is the problem of how common bodies (often active spacecraft) respond to the rarefied

environment dynamically. The problem of modeling gas forces on a rigid body has a rich history that

begins with modeling atmospheric aircraft dynamics. As the forces and moments acting on a body

in a continuum fluid are often highly nonlinear, many resulting models employ approximations that

often linearize some or part of these forces in some context. For example, classic aircraft dynamics

utilizes a single point Taylor series expansion that assumes the aircraft naturally possesses some

description of stability about one equilibrium, which is described as the aircraft’s “trim” flight.

From this, it is also assumed that any deviations from this defined point are small enough such

that the equations of motion are effectively linear within a small region surrounding the point.

This assumption has proved sufficient in the very specific cases of fixed-wing, classical configuration

aircraft at low Mach numbers which are not expected to attempt any large-perturbation maneuvers.

The conditions for linearized models cannot be met for many modern aircraft, and certainly

cannot be met for spacecraft. Most spacecraft and orbital debris can make very few, if any, as-

sumptions about their natural dynamics, and even fewer in the rarefied environment. Many actively

controlled spacecraft engage in maneuvers that change the craft’s attitude by very large angles, ren-

dering any single-point expansion linear dynamics useless.

Thus far, the most common type of modeling of spacecraft dynamics falls under the “satellite
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drag” category [16, 17] with emphasis on extracting atmospheric modeling from drag measure-

ments [33, 34, 37, 32]. The goals of this area of research are to predict the drag force on a body

moving through a rarefied gas by providing simple models that are functions of the few available

inputs, namely cross-sectional characteristic area, body mass, gas conditions such as density and

temperature, and possibly body surface properties. The widely-employed ballistic coefficient, which

is a function of these variables, is the parameter of interest when looking to characterize the dy-

namic behavior of spacecraft in low Earth orbit (LEO). Much of this work has been successful at

creating models of a one-dimensional nature that are in agreement with available data [49, 58] and

often focus on the physics of molecular interactions [57] rather than rigid-body dynamics. How-

ever, most of these data and models of drag or ballistic coefficients typically tend toward the goal

of predicting very general spacecraft orbital motion such as de-orbit trajectories and changes in

orbital parameters [14]. It is obvious, however, that a single parameter such as a drag coefficient

cannot possibly model the highly complicated non-linear phenomena that occur as a body moves

through a rarefied gas. It is with this hindrance in mind that we look to form some means of

approximating the effects of fluid forces on a rigid body that allows a wide range of states to be

occupied by the body while retaining some as-yet undefined description of accuracy. The goal

would be to provide a single set of constants for arbitrary geometry, mass properties, and flight

conditions like Kn and Ma that can used as inputs to a simulation as is illustrated in Figure 4.1.

The simplest way of providing this set of data is in the form of a look-up table–a version of which

is presented in this chapter as a baseline for future comparisons with better methods. Possessing

high-fidelity models of spacecraft dynamics can yield dramatic increases in capability of design and

operation of spacecraft, and better predictions of natural motion of debris or other inactive objects

much in the same way as high-performance aircraft are made possible by better non-linear plant

and control models. With the advent of modern computational tools such as DSMC, we can now

provide input to rigid-body dynamics models of rarefied flow systems much in the same way as we

can with classical computational methods such as numerical Euler and Navier-Stokes to continuum

fluid systems.
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Time Loop
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sṡ

A

T∞, TS
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Figure 4.1: A block diagram that illustrates the logical location of an approximation method. Set
A is defined in Section 4.1.1.

4.1 Introduction to Approximation Methods

The first approximation model to be examined is the single-point Taylor series expansion. It

is clear that choosing a single point in state space to serve as the pseudo-equilibrium about which

linear perturbations are assumed to occur is insufficient for the highly non-linear dynamic behavior

expected of spacecraft and orbital debris. This is evident in the Figure 3.2. Considering how quickly

M(α) changes about α = 0, it is clear that no linear expansion about this point is valid for the

entire range of α. Extending the order of the expansion to include higher-order truncation error, for

example a 2nd-order Taylor series about α = 0, might extend the valid range of the approximation

but would also incur significant error for any source function that is not, at most, roughly quadratic.
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Implementation of higher-order Taylor series also requires considerable effort with little return in

accuracy, particularly beyond second order. A more robust method is required to capture the full

range of α that does not rely on a single point of expansion and is overall independent of the

source functions it uses as input. In order for this “black box” method to be viable, it should work

for general cases regardless of the type, shape or otherwise “quality” of source functions. This

requirement is particularly important since the case may often arise where the source functions

contain noise or high frequency oscillations, discontinuities or other undesirable properties that

make approximation difficult. It also enforces adherence to the general goal of dynamic simulation

without knowledge of the fluid-mechanical effects on a given object.

4.1.1 Variable-Structure Model

The approximation model for the following analysis is the Variable Structure System (VSS)

or “sliding” model[71]. A VSS model is one in which a different description of a system is used

at different points in state space. It is typically applied in the form of Variable Structure Control

rather than in the system’s natural dynamics and much work in this area has involved determining

proper control definitions and switching law[18]. The VSS model can be applied to form an ap-

proximation that can meet the aforementioned requirements. This application is essentially a table

look-up method that is customized to include information required by the specific formulation of

the dynamics presented in this section.

The VSS formulation begins with the single-point Taylor expansion about an arbitrary point

sj (the multi-dimensional index j refers to any arbitrary point in the state space in which s can

exist). When truncated after the linear term it is written as

ṡ(s) ≈ ṡ(sj) + J (ṡ)
∣∣∣∣
sj

(s− sj) +O(s2) (4.1)

where J (ṡ)|sj is the Jacobian matrix of the non-linear vector field ṡ with respect to the state space,

evaluated at the point sj . The dynamics of Equation 3.2 are chosen, and the operations are per-

formed to yield a set of linearized equations of motion with expansion offsets intact. Dropping the



www.manaraa.com

137

error term (and replacing ≈ with = since it should be clear that the following are approximations),

the first equation is expanded as

ṡ1 = ṡ1(sj) +
∂ṡ1

∂α

∣∣∣∣
sj

(α− αj) +
∂ṡ1

∂α̇

∣∣∣∣
sj

(α̇− α̇j) (4.2)

with the other treated similarly. Each equation contains three constant terms and two terms that

are products of constants and state variables. The offset constants can be evaluated as

ṡ1(sj) = α̇j (4.3)

ṡ2(sj) =
Mj

Iyy
(4.4)

The state variables sj = [αj α̇j ]T are the discretized continuous variables. This is discussed in detail

in Section 4.1.1.1. After algebraic manipulation, the linear system that represents the dynamics at

any point sj is given as Equations 4.5 and 4.6 with state-specific parameter constants defined in

Equations 4.7 to 4.9.

ṡ1 = α̇ = α̇ (4.5)

ṡ2 = α̈ =
1
Iyy

(
Mαjα+Mα̇j α̇+ kj

)
(4.6)

Mαj =
∂M

∂α

∣∣∣∣
j

(4.7)

Mα̇j =
∂M

∂α̇

∣∣∣∣
j

(4.8)

kj = Mj −Mαjαj −Mα̇jα̇j (4.9)

These simple equations capture the dynamics over a region of state space centered at point sj .

When the state changes, it is examined to determine in what discrete region it currently resides

(i.e. at which value of j). The appropriate set of parameters is then selected and used to evaluate

the equations of motion. These constant parameters are similar to the linear stability derivatives

seen in classic aircraft dynamics. Though, rather than being a single set of constants, they are a

collection of sets of constants for each discrete region of state space, indexed by j. The collective of
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sets of dynamic parameters is denoted by super-set A. An extraction of a subset from this super-set

for a point sj is denoted with j-subscripts. This notation is used in Figure 4.1.

Employing the sliding dynamic model is akin to approximating all source functions with

piecewise linear functions over the discrete regions centered at each point sj . Figure 4.2 illustrates

this concept for an arbitrary source function. The state space is represented as a set of subsystems,

each described by the set of parameters: Aj = {Mαj , Mα̇j , kj}. Sliding over the state space

presents a few possible problems. One problem is that (in this formulation) there is no consideration

for how one subsystem makes a transition to another neighboring subsystem. Another problem is

that to properly capture any high frequencies or stiffness in the source functions, parameters may

need to be calculated at exceedingly high resolutions. Although all parameters can be program-

matically stored and extracted, reducing the number of constants required to represent a source

function is desirable.

Select

at j = 2

F
u
n
c(

s
)

Aj

Region j, at sj = s(t2)

s(t0) s(t1) s(t2) State Variable s

Figure 4.2: An illustration of Sliding Taylor dynamics showing subsystems covering discrete regions
of the state space.

4.1.1.1 Discretization Methods

Sliding Taylor parameters must be calculated and stored for each point in a discretized state

space. The resolution of this space determines how many parameters are required to describe the

system. For example, the source functions of M(α)–for each Ma -value–in Figure 3.2 are each

evaluated at sixty-one points, including the end points at α = ±90 deg. If a source function has
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high frequency oscillations or high gradients, the discrete space may require higher resolution in

these regions, if not the entire domain. It is important to make the distinction between the actual

state space, which remains continuous and the discrete, approximated state space. The dynamic

formulation makes no specific consideration for the current approximated state. The appropriate

set of parameters are selected and injected into the dynamics at which point the equations of

motion treat the system they have adopted as being identical in form to that present at any and

all previous states.

The set of parameters corresponding to the current state is chosen by finding the multi-

dimensional or flat index j of the state s through the following series of operations:

se,min = smin − ∆s

2
(4.10)

se,max = smax +
∆s

2

sind
k = fix

(
sk − se,min,k

∆sk

)
+ 1 (4.11)

j = (sind
1 − 1)nα̇ + sind

2 (4.12)

where k is a free index of the state vector s, ∆s is the spatial resolution of the approximated state

space (e.g in Figure 3.2 it is ∆α = (αmax − αmin)/(nα − 1) = 180/60 = 3 deg), nα̇ and nα are

the number of points in the α̇ and α directions, respectively, of the discrete state space and the

fix() function is an integer rounding towards zero. The terms smin and smax in Equations 4.10

are the extreme values of the state space defined by the user (smin,2 = −90deg and smax,2 = 90deg

for the M(α) example, if α is the first state variable). The effective state se is defined because

each point in the discrete space represents the center of its viable region, as shown in Figure 4.2.

This definition allows the end points of the space to govern space that is actually slightly outside

of the defined domain, rather than simply truncating each end point. Note that Equation 4.12 is

specific to the two-state example used here and assumes 1–indexing. It also assumes a certain loop

or packing order of the parameters–one in which the inner-most loop is over α̇, the next outer being

over α.
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It is important to note that, as with most table look-up methods, j will be out of range

of available parameter data if the real state happens to leave the pre-computed range of discrete

state space. Angles such as α alleviate the problem of choosing a suitable range over which to

compute parameters, as they naturally define a periodic domain. Thus, when calculating the source

functions, one needs only to define α over the range [0, 2π] for all possible simulations involving α.

The problem of defining a suitable range for non-periodic states such as α̇ still remains; however,

dynamics depend most crucially on α for this example. Also, it is reasonable to expect scalings

and characteristic constants will be available in most simulations such that choices of discrete

state-space domains will not prove exceedingly difficult to make.

4.2 Application Results and Discussion

Using a 1m chord NACA-0012 2D airfoil section, the Sliding Taylor approximation is applied

and integrated under the same conditions of Table 3.1. The quality of the new, approximated dy-

namics are compared to the FM in-loop baseline of Section 3.3. The objective of such a comparison

is to determine the effectiveness of the ST method while it easy to generate comparison simulation

data due to the baseline being in-loop. DSMC is then used to generate realistic source functions

for the airfoil under transition flow conditions of Kn = 1, corresponding to a circular orbit at an

altitude of approximately 109.5km. These data are then processed with ST to create a coefficient

set (a single file) for the airfoil under these conditions. This file is used as an input (as indicated

in Figure 4.1) to simulate transition flow dynamics.

4.2.1 Sliding Taylor Demonstration and Comparison

A comparison of Case 1 was made for the Sliding Taylor approximation method. Conditions

were identical to those stated in Table 3.2 with the addition of discrete state space resolutions

sj ∈ {[−180, 180] deg, [−5, 5] deg/s} (4.13)
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with ∆α = 4deg and ∆α̇ = 1deg/s. Figure 4.3a shows the state variable time histories of the

approximation method compared to the baseline in-loop method, which is considered to be the

reference or true result to which all future approximations for free-molecular flow are compared.

Cases 1 was chosen due to its initialization within the divergent region and Case 4 was chosen

for its larger angle and non-zero of initial angular momentum. The most serious departure in the
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Figure 4.3: State-variable time histories of the Sliding Taylor approximation method compared to
the baseline in-loop simulation for free-molecular flow.

approximated method occurs later in the evolution of the system where it appears some numerical

drift has occurred. This error is most prevalent for Case 1 but not visible for Case 4. Some of this

drift may be related to the relatively low resolution of discrete state space or small numerical error

that slides the state into an incorrect neighboring discrete region, therefore using that region’s set

of parameters rather than the nominal set. Both of these possible problems should diminish as

discrete state space parameter resolution increases. This convergence is examined in Section 4.2.2.

The actual relative error for each state variable as a function of integration time is presented in

Figure 4.4. Absolute error was used instead of relative error since as the body rotates past α = 0deg,

relative error becomes infinite. The drift that can be seen to occur does not amount to an absolute

error of more than one degree in amplitude of oscillation of α over the course of two oscillations in

either Case 1 or 4.
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Figure 4.4: Time histories of state-variable absolute error between the Sliding Taylor method and
baseline in-loop simulation.

The initial conditions of cases in Table 3.2 contain moderate initial angles of attack. The

method’s robustness is examined by simulating at a higher initial angle of α0 = 65deg with α̇0 =

0deg/s and α̇0 = −1.0deg/s. The specific means of calculating the constant parameters in the

Sliding Taylor method allow the simulation to be performed at any initial conditions that fall

within the discrete state ranges of Table 3.2. However, these cases still do not have initial conditions

outside of the stable region shown in Figure 3.6a. The error of the case in Figure 4.5a indicates

a more accurate approximation while the error of the case in Figure 4.5b indicates less accuracy.

The latter case’s initial angular movement may be the cause of this, with drift occurring due to

the equations of motion being initially stiffer. In all cases, the error appears to be periodic in time.

Phase shift from numerical integration drift is evident which causes the error to be zero at times

where the solutions for each method intersect.

4.2.2 Source Data Resolution Convergence Study

The most obvious problem with the Sliding Taylor method of approximation is that a great

number of constants are required to represent a general set of conditions. Knowing how fine a

resolution is necessary to achieve a desired level of accuracy is useful for avoiding unnecessary
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Figure 4.5: Time histories of state-variable absolute error between the Sliding Taylor method and
baseline in-loop simulation for high-angle cases.

computations. Furthermore, it must be confirmed that increasing the resolution of the state space

discretization actually leads to improvements in approximation accuracy. An error convergence

study was performed for each state variable. Sets of data were created wherein the discrete space

resolution of one state variable was varied while the other was kept constant. These sets were then

integrated in time using the conditions of Case 1 for 10s. For each resolution of a data set, the

L2–norm of the relative error between resulting state histories (for all time) for in-loop and Sliding

Taylor results was computed using Equation 4.14 (where k is a free index of the state vector, s̃k is

the Sliding Taylor state result and noting that sk represents the state k for all time over which it

was integrated).

||εrel,k||2 =
||s̃k − sk||2
||sk||2 (4.14)

The reduction in error norms as a function of the resolution of α is apparent but not particularly

rapid. Convergence appears to be roughly linear with respect to the resolution of α to within

1.5% for 1 deg/s resolution. There is virtually no improvement in resolution of α̇, which would be

expected as the dynamics depend very little on angular rate compared to the significant sensitivity

to the angle itself (i.e. Mα̇ ¿ Mα ). This is primarily because the rates of rotation seen in this

study, with this geometry, never contribute to an induced linear velocity at the airfoil surface that
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Figure 4.6: Relative error between in-loop and Sliding Taylor simulations under the same conditions
of free-molecular flow, as a function of discrete space resolution.

is comparable to the characteristic or stream velocity. It would require α̇ values on the order of 105

deg/s to yield similar magnitudes of induced velocity. Additionally, it is questionable whether the

transpiration model of Section 3.2.1 would be sufficiently accurate at such rates.

While the L2 norm quantifies some measure of accuracy, it does not provide a measure for

relative phase shifts in the solutions from the two models. Although Figure 4.6a may indicate that

relative error remains below 5% for angular resolutions of up to 4deg, cumulative numerical or

discretization error may still result in the type of drift seen in Figures 4.3a and 4.3b.

4.2.3 Comments on Sliding Taylor accuracy

The preceding section provides empirical evidence of convergence. The following are addi-

tional observations regarding the method’s accuracy for arbitrary geometry and flight conditions.

The first problem of interest is the possibility that the linear system that describes motion about

each discrete point in the specified state space might be locally asymptotically stable (or generally

unstable). Certain conditions may exist such that when the global system moves into a stable re-

gion, the state becomes trapped. This occurrence would artificially halt the body’s motion, leading

to incorrect conclusions about the global dynamic response. No artificial stability was observed in
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the examples presented in the preceding section and would be unlikely to occur for such simple,

symmetric geometry as a NACA-0012 airfoil. For more complicated and asymmetric geometries,

this undesirable “locking” stability may be more plausible, creating a need to examine the global

dynamics in more detail when using piecewise methods to ensure global consistency.

Another consideration is approximations that use source functions from a CFD method such

as DSMC. The concern is that a DSMC simulation might not adequately simulate the feedback

of the motion of the body on the surrounding flow field. This coupling would occur through rate

variables such as α̇. For the airfoil example, when it rotates upward, changing α over time, a

new steady-state simulation is performed at this new point. No consideration is made for the fact

that the body has “pushed” gas out of its way as it rotated. Only a true coupled-field simulation,

where DSMC is indeed in-loop, and the body geometry is altered each time step as it is allowed to

move would capture this feedback. This is certainly true for α̇, which would require a moving-body

DSMC simulation and would naturally eliminate the possibility of using a steady-state sampled

computation as described here. However, as is often the case for rigid-body dynamics, it is assumed

that time-integration of the body’s equations of motion occurs at a sufficiently high temporal

resolution such that source functions are, subsequently, assumed to change little over the time step

of the integration.

4.3 Dynamics in realistic contexts

This section briefly examines the dynamic response of the NACA-0012. Source functions

generated both the free-molecular panel method and from a set of DSMC simulations are used to

produce dynamic rigid-body simulations for flows ranging from free-molecular into the transitions

regime.

4.3.1 Frequency Study

The NACA-0012 airfoil is used to study how the mass properties and stream conditions affect

the dynamic response of a spacecraft. The airfoil is assumed to be a solid body of a homogeneous



www.manaraa.com

146

material of unit depth with mass density ρ. The initial conditions of α0 = 15deg and α̇0 = 0

deg/s induce a stable dynamic oscillation about α0. A series of simulations was performed for a

range of ρ, which directly scales the total body moment of inertia Iyy, and for a small set of Mach

numbers, which also contribute to the magnitude of the source functions. Each simulation results

in a state variable time history from which the period of the dominant oscillation of any chosen

state can be determined. The result of this frequency/period study is shown in Figure 4.7 for α.

Values of Ma = 10 and Ma = 11 were chosen because of a shift in dynamic response between these
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Figure 4.7: The oscillation period of the dominant mode in the dynamic response of the state
variable α for a homogeneous NACA-0012 airfoil in free-molecular flow is shown as a function of
body mass-density for three Mach numbers.

values. The oscillation changes from occurring about one equilibrium (i.e. α∗, from Figure 3.6) to

oscillations about α = 0. The value of Ma = 14.97 corresponds to a 155.5km-altitude circular orbit;

with the assumption of a single-species N2 atmosphere, Kn = 100 for an airfoil with a 1m chord.

The magnitude of free-molecular source functions is often assumed too low to be of consideration
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in dynamics, yet even at a very low Mach number of 5.0, the airfoil with the constant mass density

of aluminum experiences an oscillation with a period of approximately 40 minutes. Since most

orbits for which the free-molecular model is accurate have an orbital period of at least 90 minutes,

a 40-minute period suggests that a spacecraft with airfoil-like geometry may experience significant

attitude changes from gas forces alone over the course of a single orbit. As orbital altitude decreases,

Ma increases and Kn decreases causing forces and moments acting on a body to also increase, which

in turn creates faster oscillations.

4.3.2 Transition regime dynamics with DSMC

It is important to note that in-loop generation of source functions using DSMC is currently

computationally impractical. Approximation methods such as those outlined in Sect. 4.1 provide

a means to make the simulations tractable. A method such as Sliding Taylor provides an effective

“black box” functional approach where dynamic coefficients A can be computed from DSMC-

generated source functions. If DSMC simulations are performed in the transition regime, the

approximation method will use transition-regime source functions, and the result will be the ability

to perform rigid-body dynamic simulations in the transition flow regime without running DSMC

in-loop.

A piecewise Taylor decomposition is not necessary to achieving this goal. Source functions

may be computed at a high resolution and loaded at the time of simulation, in-loop. States that

fall between computed data points may be linearly interpolated. Nevertheless, approximations

like Sliding Taylor, Fourier series, or direct interpolations of higher order than linear can provide

a means of analyzing the detailed behavior of the dynamic system rather than just simulating

it. For spacecraft which possess a trim state, the analogy to aircraft is highly appropriate. In

this case, linear stability derivatives provide an excellent description of the system, and may allow

identification of characteristic modes of operation. Additionally, control schemes may be considered

that take into account aerodynamics when the dynamic system is closed-form.
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4.3.2.1 Generation of transition regime source functions

Source function generation with DSMC requires that a fluid simulation be performed for each

point sj in the targeted, discrete state space. For this study, a relatively low state space range and

resolution in each direction was chosen to make the task of source function generation tractable.

The ranges of the states and resolutions in Table 4.1 are chosen with the expectation that the

transition dynamics of the NACA-0012 will be qualitatively similar to the free-molecular cases.

The highest resolution is in α, since moment is expected to show the strongest sensitivity to α.

Table 4.1: Discrete state-space ranges for DSMC source function generation.

State var. Range Num. points Resolution

α [−90, 90] deg 61 3 deg/s
α̇ [−15, 15] deg/s 16 2 deg/s

These resolutions give 976 points to be simulated in DSMC in total. Flow conditions are given in

Table 4.2 for a N2 atmosphere to simulate transition-regime conditions for a 1m object in a 109.5km

orbit with Kn = 1. A variable-adaptive time-step method is implemented based on the smallest

local mean collision time in the domain. Domain geometry and boundary conditions are illustrated

in Figure 4.8. The DSMC code used is Voldipar. Each simulation is run to a time at which the

flow is determined to be adequately steady, then continued as a cumulative time-sample. This is the

standard method of performing steady-state calculations for DSMC[3, 2]. The imposition of each

discrete state space point sj is made by first rotating the airfoil body through the appropriate angle

of attack α, then to simulate angular rate α̇, the transpiration velocity method of Section 3.2.1 is

applied.

The selection of appropriate DSMC resolutions requires cell size/number, number of simu-

lation particles1 , geometry resolution, and time (length of the simulation to steady state and to

completion). Voldipar uses a voxel (or pixel in 2D) rasterization of the geometry. Resolutions

are specified to minimize run time with acceptable solution accuracy. These choices of resolution
1 The actual number of DSMC simulation particles is not specified, but rather the parameter Fnum, the ratio of

real-to-simulated particles. This is the actual independent variable for the study of particle number resolution as it
directly determines the number of particles in the domain.
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Table 4.2: DSMC conditions simulating transition flow in a 109.5km circular orbit for a 1m chord
NACA-0012 airfoil in N2 with gas reference temperature of 273K and a fully diffuse gas-surface
interaction model.

Variable Symbol Value Unit

Mach number Ma 24.18
Knudsen number Kn 1
Stream temperature Tin 252.9 K
Body surface temperature TS 300 K
Domain length Lx 2.0 m
Domain height Ly 2.0 m
Num. subcells per cell (each dir.) Nsc 2
Num. time steps per sample Nsam 4
Inflow number density nin 1.2944×1018 m−3

Inflow speed (aligned with +x) Vin 7838.4 m/s
Gas molecular mass mg 4.65 ×10−26 kg
Gas diameter dg 4.17 ×10−10 m
Gas ratio of specific heats γ 7/5
Gas constant R 296.8 kJ/(kg−K)
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Figure 4.8: Geometry and boundary conditions for DSMC computation of source functions for a
NACA-0012 airfoil.

were made by performing a convergence study for the code in the context of the current problem’s

geometry and flight conditions which can be found in Appendix A. The values for each resolution

that were used for performing the parameter scan are given in Table A.2.

Transition-regime source functions were generated by performing all 976 DSMC runs and
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calculating the aerodynamic moment for each. A slice of this parameter space that shows moment

function dependence on α for α̇ = 0 is shown in Figure 4.9. The curve in Figure 4.9 is similar
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Figure 4.9: Moment source function for the airfoil in N2 calculated with DSMC for Kn =1, Ma
=24.18, and T∞ = 252.9K over the discrete sub-spaces: −90 deg ≤ α ≤ 90 deg, α̇ = 0.

to those in Figure 3.2 for the free-molecular analytical method except that it appears to lack the

small, central divergent region. This function, obtained from DSMC, is roughly two orders of

magnitude greater than the free-molecular case at the same Mach number. This is a reasonable

result considering Kn of the transition function is two orders of magnitude smaller.

4.3.2.2 Transition regime rigid-body dynamics

The computation of source functions for a small set of points in a bounded, discrete state space

allows the approximation of rigid-body dynamics with the Sliding Taylor approximation method.

Using the transition source functions as input to the Sliding Taylor method, sets of coefficients

A were computed with a body mass-density of 2700 kg/m3 (aluminum), which correspond to a

moment of inertia of Iyy = 12.43 kg−m2. Time-integrations were then performed to examine the

dynamics of the airfoil for the conditions in Table 4.2. State variable time histories are shown in

Figure 4.10a for the initial state s0 = [15deg 0deg/s]T. A case with much higher α0 is shown
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in Figure 4.10b to demonstrate the ability of the approximated state space to extend into non-

linear dynamics. The resulting response for this set of conditions is a similar dynamically stable
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(a) Case of α0 = 15deg for α̇0 = 0deg/s.
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(b) Case of α0 = 60deg for α̇0 = 0deg/s.

Figure 4.10: State variable time histories for Sliding Taylor approximation dynamics of transition
flow.

oscillation about α = 0 as was observed in the free-molecular results, but with a higher frequency.

The oscillation period of α is approximately 53s in Figure 4.10a and 31s in Figure 4.10b, which

contrasts with the free-molecular case (Ma =14.97, Tin = 655.1K, 109.5km altitude) from Figure 4.7

where the period is approximately 11min.

This particular choice of initial conditions and time span is somewhat arbitrary, as more

detailed dynamics may become apparent when the system response is observed at longer times and

at various initial conditions. This behavior would typically be visible in a phase-space diagram

similar to Figure 3.6. However, the range of available states for the transition dynamics was not

nearly as wide as the free-molecular case because of the computational constraints. It is also

difficult to visualize state trajectories for the transition flow case since very long integrations must

be performed before any deviation from the canonical, symmetric oscillations can be observed.

Some insight into the long-term stability behavior of the transition flow case can be defined in the

form of an approximate amplitude profile function φ. This function is determined by scanning the

time history of a given variable that is assumed to oscillate, such as α, and taking the extrema as
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their own “profiling” function. More formally, this is the discrete, discontinuous function φ(x) =

x(tk), k = [1, 2, 3...] for some variable x that oscillates in time, where tk is the set of points in

time where ∂x(t)/∂t = 0. Taking only the odd solutions (k = [1, 3, 5...]) yields one “half” of the

original function x(tk), and taking the even solutions yields the other “half”. Figure 4.11 illustrates

the definition of φ in the sense of “peaks only”, which is used when α0 ≥ 0. The other (negative)

half of φ is used when α0 < 0. Multiple integrations over a range of initial conditions (in this
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Figure 4.11: Illustration of the definition of the approximate amplitude profile function φ for state
α, deemed φ(α).

case, the variation is restricted to α0) can then be used to gain a picture of long-term dynamics.

Figure 4.12 shows transition dynamic response amplitude profiles for various initial angles of attack,

with α̇0 = 0.

One to two hours of evolution of the simulation must occur for changes in the response to

become observable. Values of α0 & 70deg cause angular rates greater than the range of available

computed data (see Table 4.1) and so were not examined. At least two limit sets appear to be

present: one at α ≈ |18.5deg| and another at α ≈ |35deg|. Others may be present near α ≈ |65deg|

and α ≈ |75deg|. Due to the tendency of amplitude profiles of simulations that start at α values

between these values to converge to them eventually, it may be acceptable to describe these angles

as locations of limit cycles, as each represents a stable orbit in state space which is isolated from

neighboring orbits. The initial state of [α0 = |0deg| , α̇0 = |0deg/s|] is an equilibrium (though not
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Figure 4.12: Approximate amplitude profile functions φ(α) for a realistic body density of ρ =
2700 kg/m3 for various initial angles of attack at α̇0 = 0 (Note that φ(α0) = α0 by construction of
φ).

plotted in Figure 4.12). It is difficult to determine which initial conditions may create unstable

trajectories here as the entire periodic range of α was not computed. With larger coverage of

the discretized state space, more dynamic insight would be possible as more information becomes

available.

4.4 Fourier Series Approximations

In the example dynamics given in this chapter, it is difficult to ignore the obvious beneficial

property of the single degree of freedom, angle α: it is naturally periodic. The moment source

function itself is then also periodic, which leads to the conclusion that an excellent choice of methods

to approximate it is a Fourier series (FS) representation. A Fourier series has the advantage that

its eventual approximation function is entirely continuous. This property contrasts with the ST
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method which defines a separate system at each discrete region of state space, leading to the

possible ambiguity of behavior during transition between these regions as noted in Section 4.2.3.

For periodic source functions (like M(α)) that have a sinusoidal quality, the number of Fourier

coefficients required to approximate them scales with dominance of frequencies. For simple, low-

frequency-dominant functions such as the moment source function given for the airfoil in Figure 4.9

and even the Arbject in Figure 3.9, very few coefficients may be required to obtain the same or

better level of accuracy when compared to the ST method. An example of FS approximation of

the function in Figure 3.9, which is for the Arbject of Section 3.3.2 in FM flow, can be seen in

Figure 4.13 The approximate version, ∼M(α), is created in this example with nine Fourier terms.
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Figure 4.13: Fourier series approximation of the moment source function for the Arbject in free-
molecular flow of N2.

The equivalent ST version of this approximation would require as many coefficients as there are

piecewise linear segments (in this case, there are 90 segments). Overall, FS is superior for this class

of function; as it is a cleaner approach.

Where FS sees disadvantages is when being used on source functions of states that are not

periodic (namely rates). For simpler functions that do not oscillate, as is expected for a function of
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a state such as object speed or gas density, more Fourier terms are needed than would be required

if a simpler linear or polynomial model were used. Non-periodic functions will also be very poorly

approximated at the boundaries of their domains where FS naturally enforces a periodicity that

is not truly present. These drawbacks may be of little concern, however, when larger dimension

state spaces require multidimensional source functions. The additional level of complication in

such cases is more cleanly and easily implemented with FS as generation of Fourier coefficients

generalizes to n−dimensional functions more obviously than does the ST method (although ST is

the most general method, and certainly works for any number of state subspace dimensions). Care

is then taken to note that non-periodic states that move out of the appropriate domain of computed

data cannot be used to evaluate a source function at those points. This is an acceptable limitation

as the range of validity of states is already restricted to the computed domain of source data.

In a Fourier representation, the source functions are replaced by sums of Fourier terms upon

integration of the equations of motion. No other treatment of the equations is necessary. This

contrasts with ST in which a Taylor expansion of the equations is performed, with the intent of

obtaining constant coefficients that are functions of partial derivatives of each source function with

respect to the state. Thus, FS is also a simpler implementation at the integration stage, requiring

no other special considerations (such as selection of an appropriate set of constants corresponding

to the current state’s discrete region in ST) other than the aforementioned enforcement of the state

being in a valid location overall.
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Flow-Motion Coupling and Transpiration Models in DSMC

In order to generate accurate information that can be used in rigid-body dynamic simulations

and analysis, a number of considerations must be made with respect to how DSMC can be used

accurately. In most rigid-body dynamic representations of motion, aerodynamic force is a function

of a number of state variables. In the most general case, the state will include positions or displace-

ments (such as angles that represent orientation) as well as rates (such as the rates of change of the

orientation angles) such as the single degree-of-freedom example given by Equation 3.2. It order to

understand what forces, moments and heat transfer the rigid-body experiences as it moves through

the gas, it may be necessary to consider motion that covers the full state range. This means that

a multitude of DSMC computations must often be performed over various states, which may make

impractical demands on computational resources.

Using the airfoil example examined in previous chapters, the effect of the rate of change of

angle of attack α̇ on the flow is first considered. Since the moment source function M is a function

of the angular position, a number of DSMC computations would be performed over a range of α in

order to establish the dependence of moment on this angle. Also, each range of α must be computed

at a certain α̇ in order to generate the basic set of data from which approximations to M may be

made. In order to resolve the system’s dependence on rates, some method performing DSMC

calculations for a moving boundary must be employed. The simplest method (“real motion”) is

to employ a moving boundary method such that the immersed body rotates in real time as the

computation evolves as shown in Figure 5.1. This method is typically extremely costly for any
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numerical technique, and DSMC is little exception.

Figure 5.1: The real motion method for an airfoil that is rotating upward at α̇.

An alternative to true rotation is to adjust the stream direction to mimic a rotation (“true-

equivalent” or just “true”). The flow entry angle is adjusted to −α(t) over time by changing the

domain boundary conditions appropriately as illustrated in Figure 5.2. Adjusting the boundary

conditions of the domain is a much more tractable approach as no re-meshing or other treatment

of transforming geometry need be considered, and thus the additional computational overhead is

minimal. Unfortunately, for very low rates, this method remains cumbersome. At lower rates, if a

Figure 5.2: The true-equivalent method for an airfoil that is rotating upward at α̇. The freestream
velocity is rotated the opposite direction at rate α̇.

given angular displacement is held constant, a DSMC simulation will take longer time to complete.

The time scales of hypersonic flow (both transport and typical molecular collision times), are very

small, and often orders of magnitude smaller than the characteristic time of body motion. For

example, many flows that mimic a re-entering object at an altitude of 85km (Kn ≈ 0.01) will have

characteristic flow times on the order of 10−7s. A rotating object of one meter in scale displacing

a small angle (∼5 deg) must rotate at approximately 105 to 106 deg/s in order to be comparable

to the characteristic flow time. This is much higher than any spacecraft is expected to rotate.

Angular rates on the order of 1 to 100 deg/s are more realistic. If a simulation of α̇ = 1 deg/s is

desired, the body will require one second of simulation time to displace one degree. One full second
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is exceptionally long in a DSMC simulation whose time scales are ∼10−7s, and thus the simulation

will require a great deal of wall-clock time to complete. Seeing as how many of these simulations

would be required to construct the necessary set of data, this “true” method is still undesirably

slow.

Another approach that can be examined is the use of transpiration boundary conditions on

the immersed body. Transpiration is mentioned in Section 3.2.1 in the context of free-molecular

and DSMC simulation. It is the method used in the one degree-of-freedom studies presented in

Chapters 3 and 4. In this method, the body remains fixed in the computational frame, and no

domain boundary conditions are adjusted. Instead, each element of the body’s surface is given a

velocity Vm that corresponds to the velocity that element would experience if it were rotating about

a given reference location rref , as seen in Figure 5.3. Traditionally implemented in incompressible

Figure 5.3: An illustration of a transpiration boundary condition on an airfoil that is rotating
upward at α̇ about reference point rref .

continuum flow CFD [24, 61, 59], the goal is to mimic the effect of rotating without changing

anything during the simulation. This method permits computations to be performed in such a way

as to cover a range of rates and angles in minimal time. What remains to be understood is the

difference between the transpiration approximation of movement and actual movement. In other

words, the nature of motion-flow coupling must be understood in order to make use of a reduced-

order model such as transpiration. When the flow becomes independent of the body’s motion, and

thus depends only on its orientation, it can be termed “decoupled”.

This investigation aims to provide some initial insight into the mechanisms of motion-flow

coupling in a rarefied gas, focusing on the limit of angular rate in the aforementioned example

problem. The specific goal is to demonstrate that transpiration can be an effective model at low
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angular rates. Additional information regarding accuracy and specifics of DSMC simulations is

presented.

5.1 Inaccuracy of the true-equivalent method

The true-equivalent method has been applied historically in continuum numerical simulations

to great effect, often in establishing source functions for airfoils and the like. However, there is a

serious problem with this method when applied to supersonic flow. In fact, the problem applies

for any flow in which flow structures such as shocks, turbulence or vortices exist upstream of the

immersed solid object. If the goal of the simulation is to compute body surface properties such as

forces and power flux, molecules of a moving, entering stream will not impact the surface in the

same location or with the same momentum and energy as if they had been unobstructed by flow

structures. Consider the case of the airfoil at any given α, as shown in Figure 5.4, where the angle

is enforced by adjusting the left and bottom stream boundaries to include appropriate components

of velocity that give the desired stream angle. A particle that enters from either the left or

bottom boundary will, in FM flow, certainly remain incident upon a given location on the airfoil’s

surface and will impact that location, imparting a fraction of its momentum and energy–quantities

that are known (actually, specified, since they are generated by the program) at the time of entry.

This is shown schematically as the projected impact position in Figure 5.4. However, if collisions

are occurring, a shock forms upstream of the body, which the same entering particles must first

cross before having any opportunity to impact the body. Crossing the shock effectively renders the

history of the moving particles irrelevant. Having traversed the shock, they may no longer have

the expected properties and may not even be incident on the body at all; and certainly not in the

same location as if they had been free-molecules. The actual position shown in Figure 5.4 is of

the case where a particle that has traversed the shock has not impacted the surface at all. The

shock’s existence prevents any prediction being made regarding how the surface will experience the

domain’s flow as it evolves if only the boundary conditions of the problem are known. In other

words, no “shock transfer function” exists that would describe how a molecule incident upon the
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3)

Figure 5.4: Illustration of shock traversal in DSMC by a particle entering at stream angle α and
stream angular rate α̇.

shock is affected by the shock, and thus how it leaves the shock. Some analytical representation

of the Boltzmann equation’s collision operator would be required to obtain such a description. If

such a means of analysis existed, numerical simulations wouldn’t be necessary at all.

Changing the entering stream’s angle is likely an acceptable means of simulating a statically-

angled flow (e.g. α̇ = 0). But when a moving boundary condition at the domain stream boundaries

is imposed in order to simulate motion of the body, the assumption of equivalency is incorrect. In

the example of |α̇| > 0, the desired feigning of a rotation of the body will not be achieved. This is

because the addition of a component of velocity that changes at each flow time step (i.e. acceleration

at the domain boundary, shown as Vm,0 in Figure 5.4) will have no predictable effect, in general,

on the body due to shock (or other flow structure) interference. When attempting to simulate a

rotating body by increasing α(t) over time, one way in which the motion may be characterized is by

the additional components of momentum and energy that the rotation alone brings to the flow. The
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way in which a moving or transpiring surface affects the energy and momentum balance between

itself and the gas is discussed in the next section. Appendix B also presents an explanation of an

easily overlooked problem when simulating angled entry flow which pertains to implementations of

true-equivalent methods in DSMC.

5.2 Energy and Momentum Balance

The most obvious inputs to the collisional feedback system are the additional energy and

momentum that the moving or transpiring surface imparts to the gas. Calculation of these quanti-

ties can instead be examined with respect to the body. An energy or momentum balance between

the surface and the gas requires the relative velocity of particles impinging on and reflecting from

the surface. Consider a single molecule that is incident upon a moving or transpiring surface. The

relative velocity of the molecule can be decomposed as the difference of the incident velocity Vi

and the velocity due to body motion or transpiration Vm of the surface element upon which the

molecule is incident, shown as Equation 5.1. The definition is similar for reflecting molecules but

with the incident velocity replaced with the reflected velocity V GSI
r which is due to the gas-surface

interaction model only, shown as Equation 5.2. Figure 5.5 illustrates this arrangement, highlighting

incidence for one direction of motion for a surface element, and reflection for another direction on

a different element.

V rel
i = Vi − Vm (5.1)

V rel
r = V GSI

r − Vm (5.2)

The movement velocity Vm is that of a specific location on a surface (i.e. the location of a surface

element). When implementing transpiration on the surface in DSMC, Vm is prescribed directly.

When performing a true motion simulation, Vm arises naturally from the prescribed motion. Tran-

spiration is implemented by specifying Vm at every surface element. When a molecule impacts a

surface element, the energy transferred to the element is given as a function of the relative velocity
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Figure 5.5: Velocity definitions of impact and reflection of molecules incident on a rotating object.

and can be written as

Ei =
1
2
m‖V rel

i ‖2 + Eint
i (5.3)

where Eint is the sum of all energies of the internal modes (e.g. rotational, vibrational). This leads

to the energy decomposition of

Ei = Ei,tr + Eint
i + Ei,m (5.4)

Ei,m =
1
2
m‖Vm‖2 −mVi · Vm (5.5)

where Ei,tr is the incident translational energy and Ei,m is the contribution of energy to the body

solely due to actual or implied motion. The momentum is simply

Mi = Mi,tr + Mi,m (5.6)

where Mi,m = −mVm is the contribution of momentum due to motion. For reflecting molecules,

these definitions are similar, but with Ei,tr and Mi,tr replaced with EGSI
r,tr and MGSI

r,tr , respectively.

Using these definitions of energy and momentum, the total change of energy experienced by
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the surface is then

∆E = Ei − Er

= Ei,tr + Eint
i + Ei,m − (EGSI

r,tr + Eint
r + Er,m)

=
1
2
m(|Vi|2 − |V GSI

r |2)−mVm · (Vi + V GSI
r ) + Eint

i − Eint
r (5.7)

and change in momentum is

∆M = Mi −Mr

= Mi,tr + Mi,m − (MGSI
r,tr + Mr,m)

= m(Vi − V GSI
r ) (5.8)

Equation 5.8 indicates that for momentum, there is no dependence on actual or implied motion.

However, due to the cross-term in Equation 5.7, there is a contribution to energy of the surface

by the motion that is a function of the motion-only velocity Vm. When a surface element is not

actually moving, but is instead using transpiration, the imposed transpirational velocity is equal

to Vm. There is no difference between actual motion and feigned motion via transpiration. When

considering the effect of motion or transpiration on the surface, energy and momentum balance can

be described identically for both models.

One important note to make is that the change in energy experienced by the surface can only

occur at the surface itself. This distinction is made particularly to further explain why the true-

equivalent model cannot accurately model motion in hypersonic rarefied flows over solid bodies, as

discussed in the previous section. The body that lies behind the shock in Figure 5.4 experiences

only local flow perturbations, as the shock prevents information upstream from reaching the surface

unaffected. Particles that are near the surface will reach an energy balance with the surface in the

way described in this section only if they are allowed to impact it, and the body is actually moving

(thus, implicitly imposing Vm) or transpiring. In the true-equivalent model, the imposition of Vm

is performed at domain entry rather than at the surface, meaning that the additional energy given

by the cross-term of Equation 5.7 will not “reach” the surface, as it is changed as soon as particles
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traverse the shock, effectively destroying the target body-gas energy balance. Superimposing an

accelerative motion at entry in the form of Vm intentionally creates an energy balance in the wrong

context and location.

5.3 Positional Arguments for Transpirational Accuracy

Discussion of energy and momentum balance in cases of motion and transpiration derives from

arguments relating to velocity and acceleration of particles and how those quantities are affected

by the velocity and acceleration of an immersed body. Actual motion and transpiration appear to

give the same results in the velocity context. Changes in energy and momentum described in the

previous section are per-collision, and thus can be described as being collision-normalized (actually,

mass-specific) quantities. A greater picture of true total changes in these quantities is impossible to

obtain without consideration of dimensional energy, which requires knowledge of the rate of surface

impact of particles. The proper mechanism for transfer to energy and momentum is given in terms

of mass and velocity. If both models of motion introduce the same change in velocity (given as

Vm), then changes may still occur due to more or fewer particles impacting the surface. Therefore

it is unlikely that an argument in a velocity context alone can properly explain if transpiration

remains accurate for all conditions of motion. The other context to consider is necessarily position.

Understanding the effect of particle positioning with respect to a surface under general conditions

is necessary to knowing the number flux of particles to the surface, and thus the final description

of energy and momentum balance.

One way to eliminate the effect of position in a motion/transpiration problem is to choose

a simplified geometry for which all geometric transformations yield an identical flow problem.

Flow over a disk (cylinder) meets this requirement. Classic continuum fluid dynamics uses the

cylinder as a canonical problem. Transpiration is often applied at the boundary of a cylinder to

simulate a rotation. For a cylinder of radius R, a pure rotation about the center point in 2D gives

the magnitude of the motion-only velocity as |Vm| = Rα̇, which is constant for all points on (or

segments comprising) the surface. During a numerical simulation, true motion can easily be created
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by rotating the cylinder geometry the appropriate angle according to the time step; however the

result is an identical circle to the starting geometry and thus the operation is trivial. The cylinder

cannot extend or retract any portion of its surface into or out of the flow, as is possible in more

general cases. It cannot create a conflict of position between itself and resident particles in the

volume of the domain into or out of which it has moved. For other geometry, a surface that moves

into a location where it was not located at the previous time must “push” particles in that location,

effectively creating or inducing reflections that would not have occurred if the surface had remained

static. Alternatively, if a surface retracts from a location, it creates a space in the domain that

was not available previously. Particles may then enter this region instead of impacting the surface,

as they would have had the surface remained static, again. In is unclear how these mechanisms

actually occur in reality or how to model them in a DSMC simulation. A rotating cylinder never

creates these conflicts, implying that if it is modeled with transpiration, a simulation should give

identical results to a cylinder modeled by imposing true motion.

For general geometry, however, error owing to positional conflicts and uncertainties is likely

to exacerbate as rates of motion increase. A surface being in a new position may even cause some

particles that would have impacted it to avoid it completely, or cause particles that would have

never be incident upon the surface to impact it.

5.4 Numerical Examination of Transpiration in DSMC

Without the ability to perform a true motion simulation in DSMC, the only conclusion that

may be reached regarding the transpiration model is whether it is necessary at all. For the high

Ma cases commonly addressed in problems involving low orbital flight, the stream speed is of the

gas is often so high that the motion of the body may be negligible compared to its angular position

with respect to the stream. Forces, moments and energy transfer to the body likely depend much

more on flow incidence angles than on angular rates when said rates are low enough. To test this

hypothesis, a numerical experiment was performed involving a 1m chord NACA-0012 airfoil and an

Arbject of parameters (L = 1.00m, θ = 30deg, p1 = (0.75, 1.00)m, R = 0.20m, d = 0.40m, ω = 6).
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For each geometry, physical conditions of Table 5.1 and were used along with the DSMC resolutions

and additional parameters of Table 5.2. A range of α ∈ [0, 45]deg was simulated for seven values

Table 5.1: DSMC physical conditions for a transpiration rate limit experiment in N2 with gas
reference temperature of 273K and a fully diffuse gas-surface interaction model.

Variable Symbol Value Unit

Mach number Ma 28.40
Knudsen number Kn 0.01
Stream temperature Tin 184.0 K
Body surface temperature TS 300 K
Domain length Lx 2.0 m
Domain height Ly 2.0 m
Inflow number density nin 1.2944×1020 m−3

Inflow speed (aligned with +x) Vin 7853.20 m/s
Gas molecular mass mg 4.65 ×10−26 kg
Gas diameter dg 4.17 ×10−10 m
Gas ratio of specific heats γ 7/5
Gas constant R 296.8 kJ/(kg−K)
Gas rotational deg. of freedom ζ 2
Rotational relaxation constant Zrot 1/5

of α̇, representing a scan over six orders of magnitude: α̇ ∈ [0, 1, 10, 100, 1000, 1×104, 1×105]deg/s.

At each angle, the body was given a distribution of transpiration velocity Vm along its surface

corresponding to a specified angular rate α̇. A DSMC simulation was performed which allowed the

flow to evolve from t = 0 to t = tss, at which point steady state sampling was activated and the

transpirational velocity was applied for the remainder of the evolution to tmax. Variable time steps

were used with γt = 5.5 (see Section 1.2.4).

To examine the effect of increasing α̇ via transpiration, the static case α̇ = 0 deg/s was used

as a datum and the relative error of each other rate, for each physical quantity (forces, moment

and power), was calculated with respect to this datum. For the airfoil, comparisons for moment

error about the quarter chord and error in total power to the surface are given in Figure 5.6. For

the Arbject, the same information (with moment taken about p1) is given in Figure 5.7. The

objective of this method of comparison is to determine when transpirationally modeled rotation has

any significant effect on the values of the aforementioned macroscopic variables. It does not offer
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Table 5.2: DSMC resolutions and other parameters for a transpiration rate limit experiment.

Variable Symbol Value Unit

Ratio of real-to-simulated particles FN 2.0× 1015

Num. cells in x Ncx 170
Num. of cells in y Ncy 170
Num. of subcells per cell (each dir.) Nsc 2
Num. time steps per sample Nsam 4
Time to steady state tss 0.001 s
Time to end tmax 0.003 s
Voxel resolution nvox 800

any means of determining the conditions under which transpiration, as a model, is less accurate

when compared to a true motion simulation. The lack of a true motion DSMC simulation prevents

such a study from being performed. The current study emphasizes that the only valid means

of simulating motion aside from a true motion method would be the use of transpiration (the

true-equivalent method’s natural inaccuracy, as described in Section 5.1, prevents it from being a

valid candidate). However, if there appears to be little difference between using transpiration and

simply ignoring motion when rates are below a certain limit, then there may be little reason to

consider modeling motion below such a limit at all. The discussion of Section 5.3 indicates that it is

insufficient to merely observe, numerically, that transpiration results in negligible change in forces

at low rates in order to conclude that flow is decoupled at those rates. The “velocity argument” may

be sufficient, but the “mass argument” (i.e. understanding that number flux changes in ways that

may be strongly coupled to motion and the evolution of the near-field gas) is incomplete without

much more detailed analysis, or the availability of a true-motion DSMC simulation code.

From Figure 5.7 it is clear that the highest rates result in severe departures from the static

datum. Although the intuitive prediction that was initially posed would seem to be validated, i.e.

that some rates are simply too high to ignore, these errors appear to be alarmingly large. Part of the

initial assumption is that when ‖Vm‖ is on the order of the characteristic stream speed (or possibly

just the near-field characteristic speed), the gas motion becomes more strongly coupled to the body

motion. Again, this study is unable to validate such an assumption. However, there appears to be
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(a) Relative error in moment about the quarter chord.
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(b) Relative error in total power to the surface.

Figure 5.6: Effects of transpiration velocity on a NACA-0012 airfoil for various values of α̇ over a
range of α expressed in terms of relative error from the static case.

a reason why the large errors seen in Figure 5.7 that derives from the implementation of the DSMC

movement algorithm. When the surface motion velocity Vm is great enough and aligned with a

surface’s normal direction, “receding” surfaces that are modeled with transpiration will artificially

trap particles that impact them. Consider the example scenario in Figure 5.8. The surface is

physically static in the simulation. The velocity Vm is the transpirational velocity appropriate to

the surface’s desired movement, which is directed upward. A particle that impacts the surface

is then positioned as close as possible to the wall and given its new total reflected velocity Vr,

which is the sum of the velocity solely due to GSI, V GSI
r and Vm. The resulting velocity is directed

upward, back towards the surface. Immediately upon the next movement step, this particle, having

a velocity and position that make it incident upon the same surface it just impacted, will impact

the same surface again. The same surface interaction will occur, placing it just off the surface, with

a velocity that implies yet another immediate impact upon next movement. Many GSI models

tend to employ reflection kernels that yield a most probable reflected direction that is close to the

surface outward normal direction. The fully diffuse Maxwellian kernel is an example of this type

of model, where the raised cosine distribution results in most molecules leaving the surface with a

large normal component. Thus, on average, a transpiring surface with Vm ≈ −V GSI
r will artificially
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Figure 5.7: Effects of transpiration velocity on an Arbject for various values of α̇ over a range of α
expressed in terms of relative error from the static case.

static surface

static surface

Figure 5.8: Illustration of transpiration artificial particle entrapment.

accumulate particles on (or immediately near) itself, effectively retaining them until collisions force

some to leave. Each particle in this region will continue to re-impact the surface, transferring more

energy and momentum to it, and thus inflating the final results for quantities such as force and

power.

This artificial entrapment can be witnessed in simulation. Figure 5.9 shows the distribution

of particle impact rate over the surface of the NACA-0012 airfoil and Arbject under the conditions
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of Tables 5.1 and 5.2 for a number of different values of α̇. The distribution of Ṅ is plotted along

the surface coordinate s, (which is shown graphically in the figure) where s = 0 corresponds to

the trailing edge for the airfoil geometry and the indicated point for the Arbject. For the airfoil,

transpiration was applied to mimic rotation upward (also illustrated in the figure), causing the

upper surface close to the trailing edge (where s close to zero) to recede. For values of α̇ ≤ 10, 000

deg/s, the distribution is relatively symmetric about the airfoil’s plane of symmetry, indicating

only weak, if any, effects of the imposition of transpirational motion. As α̇ approaches the value

of roughly 32244 deg/s, entrapment begins to occur in the receding region, causing Ṅ to increase

dramatically. The value of α̇ = 32244 deg/s is the characteristic angular rate of the system that is

determined by equating the induced transpirational/motion speed at the trailing edge, Vm = α̇Lc,

with the most probable reflected speed cr,mp = 1/βs =
√

2kTs/mg of the surface in a diffuse GSI

model. In this case cr,mp is roughly 422 m/s, and Lc = 0.75m is the maximum moment arm of

the airfoil about its quarter chord). Solving for α̇ gives the aforementioned value of 32244 deg/s,

which marks the point at which the transpirational velocity roughly counters the reflected velocity

due to GSI only. Above this value, artificial particle entrapment creates incident number rates

orders of magnitude greater than the natural greatest region – the leading edge. In Figure 5.9b,

the freestream flow is angled at 45 deg, thus causing Ṅ to be highest on the lower surface as would

be expected. Entrapment occurs in the receding region nonetheless, causing number incident rates

approximately equal to those occurring at the lower surface. The Arbject’s special rotation rate

of α̇ = 38768 deg/s is based on the same cr,mp acting from the first point of the highlighted upper

region in Figures 5.9c and 5.9d. This region is the most normal to its induced movement velocity

Vm. Less drastic entrapment effects are present for the Arbject, possibly because of the overall

bluntness of the geometry. Surfaces that are normal to the incident stream velocity naturally

induce more collisions upstream of themselves, which may serve to expedite the evacuation process

of entrapped particles.

Contrast this entrapment mechanism with a surface that is actually moving, as shown in

Figure 5.10. Particles are reflected with the same value of Vr, on average, as in the transpirational
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case. However, the surface is repositioned to its new location by moving a displacement δm =

Vm∆tf , where ∆tf is the flow time step. The particle, when moved, displaces by δr = Vr∆tf in

the same time interval. If over this interval, neither the particle or surface is said to accelerate (as

would likely be the assumption in any numerical scenario), then the particle will only re-impact

this receding surface if δr < δm. In the context of the figure, this inequality is satisfied when

‖V GSI
r ‖ < 0. In general terms, this means that particles which have just been reflected cannot

catch up to a moving surface as long as V GSI
r · n̂ > 0, which is always true for any GSI model,

usually by construction of the model (Note that, in Figures 5.8 and 5.10 the off-edge position should

considered to be infinitesimally close to the surface). Thus it can be concluded that true motion on

receding surfaces will never be responsible artificially entrapping incident particles in a simulation

that performs surface motion in a manner consistent with Figure 5.10.

On the opposite side of the body in Figures 5.8 and 5.10, a compression or encroaching

occurs. In this region, it is natural to assume that re-impacts will occur which are not artificial.

Though for the transpiration case, since the surface is static, fewer impacts will occur than would

be expected in the true motion case. And although this effect is artificial, its effect on the state

of the nearby gas should not be as drastic as the receding case. The creation of a local region

with high density and high collision rate will serve to collect more particles at a faster than linear

rate. This is particularly true if the NTC method (Section 1.1.2) is used to select collisional pairs

since it is a function of what is essentially number density squared. Furthermore, it relies on a

continuously-updated value of the collision cross-section (σT cr)max, which changes proportional to

1/n. Some of this uneven error is visible in Figure 5.9b in the encroaching region (s & 1). Here,

for α̇ > 32244 deg/s, number rates drop slightly below those of the < 10k deg/s data, owing to

artificial expansion of the nearby region. Still, the difference in Ṅ of these high-α̇ cases below the

lowest rate cases in the encroaching region is much smaller than the difference above the lowest

rate cases in the receding region.

It is likely artificial entrapment causes the large departure in macroscopic variables for high

rotational rates seen in Figure 5.7. In these computations, it is worthy to note that not only does
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transpiration at these high rates cause unphysical error, but computational performance is greatly

degraded. Performing simulations for the α̇ = 100k deg/s cases took an order of magnitude more

time to complete due to the overly high collision rate near receding surfaces.
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Figure 5.9: Particle impact rate for simulated rotation of each geometry under various values of α̇
using transpiration. Rates in the ≤ 10k deg/s category were for α̇ ∈ [0, 1, 10, 100, 1000, 10000].
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Figure 5.10: Illustration of true motion particle reflection freedom: particles are not artificially
trapped by receding surfaces.
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5.5 Conclusions

At least one of the differences between a transpiration model and true motion when imple-

mented in a numerical method such as DSMC has become evident. When a surface is physically

static and its motion is merely simulated with transpiration, very little difference between no mo-

tion and any motion can be observed in cases of high Ma unless the induced motion, applied via

transpiration, approaches (or exceeds) the characteristic rate of the system that places receding

surfaces in modes of artificial entrapment. For the example problem of a NACA-0012 airfoil under

pure rotation, this rate is

α̇TP
c =

1
Lc

√
2kTs

mg
(5.9)

for a diffuse GSI model. Furthermore, this is an argument deriving from position, as anticipated

in Section 5.3, though by no means the entire argument. The details of gas-body feedback are

still difficult to describe, and require a true motion DSMC simulation to make proper numerical

comparisons. The results in this chapter simply present some initial paths of investigation.

In Chapters 3 and 4, evidence was presented for ignoring high rates of motion in the context of

rigid-body dynamics deriving from rarefied gas flow. Dependence on α̇ in approximation methods

was observed to be orders of magnitude weaker than functionality on the angle itself. In this

Chapter, the question of whether to consider angular rates in rigid-body dynamic simulations in

transition flow at all was posed. The various methods of modeling motion were presented, with

transpiration being identified as being the only reduced-order model that may be both viable and

generally feasible in practice. Without a simulation code that models true boundary motion, a

direct comparison could not be made between transpiration and true motion. Examining particle-

specific energy and momentum balance between the gas and solid surfaces is unlikely to show that

transpiration is any different from true motion. However, in practice, simulations show a significant

change in macroscopic quantities when very high values of transpirational velocity are imposed. Part

of the reason for these changes stems from artificial increases in the number of particle impacts on

certain surface segments. These increases, noted as an entrapment of particles that impact receding
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surfaces, can account for the dramatic increase in macroscopic variable values on immersed bodies

when transpirational velocities are higher than some description of characteristic velocity such as

Equation 5.9; which is determined by noting when the reflected velocity due to GSI of a surface is

comparable in magnitude to the transpirational velocity. In real motion, artificial entrapment is not

expected to occur as surfaces will physically move away from particles in time to avoid improperly

collecting particles and putting the near-field into a self-compressing loop.

Though more detailed explanations of coupling may be required, it seems acceptable for the

purposes of this work to assume that flow-motion decoupling occurs in realistic systems such as

spacecraft flying in low Earth orbit, at high Ma . Only at extremely high velocities (e.g. rotations)

is a coupling likely to create additional forces, moments and power that are large enough to be

distinguished from those observed without any body motion at all. Thus, the remaining develop-

ment of rarefied aerodynamics problems presented in the following chapter will ignore dependence

on angular rates and focus primarily on angular positions.
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Rigid-Body Dynamics in Orbit

Introducing body dynamics to orbital motion is the final goal of this work. The improvements

in DSMC, the Voldipar code and lessons learned from development of single-degree-of-freedom dy-

namics may be combined to form the basis for creating time-accurate, unsteady simulations of

objects in orbital flight. Particular attention in this chapter is paid to continuum-rarefied tran-

sition dynamics. Example problems are given which simulate very low Earth orbital flight and

atmospheric entry. These high-fidelity simulations, and the dynamic information they yield form

the demonstrative conclusion of the overall goal of improving spacecraft dynamics from the per-

spective of rarefied aerodynamics.

6.1 Equations of Motion

To perform a 2D simulation of a rigid body in orbit, the perifocal frame (the natural orbital

plane created by the gravitational two-body problem ), is chosen. The center of the Earth is

considered to be the origin of an inertial frame in space which is spanned by the two basis vectors

X̂ and Ẑ. The center of mass of an orbiting body experiences a gravitational force acting inward

towards the origin. In addition to gravity, the body experiences force exerted on it from its motion

through the gas of the atmosphere. Figure 6.1 illustrates the necessary definitions of angles and

basis vectors. At a given time in orbit, the center of mass is located at position r, moving

at velocity V . For general orbits, the instantaneous velocity makes an angle γ with the angular

direction basis vector êθ which is classically termed the flight path angle. For purely circular orbits
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Figure 6.1: Angle and coordinate system definitions for an object in a 2D perifocal-only orbit.

γ = 0 (i.e. V remains tangent to the local horizon). The angle of attack α is defined as usual,

with it being the angle between the velocity vector and the body frame’s x̂ vector. The angle θ

corresponds to the perifocal true anomaly. The angle ψ serves as a pitch angle in this formulation.

In order to add aerodynamic force into the system, the two-body pure gravitational equations

must be augmented with additional force terms. Similarly, the body frame dynamic equations of

motion must include gravitational force terms. No gravitational moments exist as the object is

assumed to be small enough such that all gravitational force can be said to act at its center of

mass, which is typical of artificial satellites. The Newtonian[51] gravitational equations are written

first in the Earth-centered inertial frame (X-Z) as

F (XZ)
g + F (XZ)

a = mr̈(XZ) (6.1)

where m is the orbiting body’s mass and the position is r(XZ) = [rX rZ ]T. Vectors F
(XZ)
g and

F
(XZ)
a are gravitational and aerodynamic forces in (X-Z) frame, respectively. Gravity can be
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expressed in this frame as

F (XZ)
g = −mµ

r2

 cos(θ) X̂

sin(θ) Ẑ

 (6.2)

where r is the magnitude of vector r and µ is the gravitational parameter of the fixed/central body

(e.g. Earth). Noting that θ and r are functions of time and given the definition of r(XZ) as

r(XZ) = r(t)

 cos(θ(t)) X̂

sin(θ(t)) Ẑ

 (6.3)

then the components of Equation 6.1 are calculated as

FgX + FaX = mr̈X = m
(
r̈ cos(θ)− 2ṙθ̇ sin(θ)− rθ̇2 cos(θ)− rθ̈ sin(θ)

)
(6.4)

FgZ + FaZ = mr̈Z = m
(
r̈ sin(θ) + 2ṙθ̇ cos(θ)− rθ̇2 sin(θ) + rθ̈ cos(θ)

)
(6.5)

Notation r(t) and θ(t) have been dropped with the understanding that these variables are functions

of time. Solving for r̈ and θ̈ implicitly puts the system into the more natural r-θ frame. Defining

r(rθ) = [r θ]T gives  r̈

θ̈

 =

 rθ̇2

−2rθ̇
r

 +
1
m

Srθ
XZ

(
F (XZ)

g + F (XZ)
a

)
(6.6)

where Srθ
XZ is the rotation matrix which transforms from the inertial frame X-Z to the r-θ frame

defined as

Srθ
XZ =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 (6.7)

Using the definition of gravity from Equation 6.2, Equation 6.6 reduces to the simple form of r̈

θ̈

 =

 rθ̇2 − µ
r2

−2rθ̇
r

 +
1
m

Srθ
XZF (XZ)

a (6.8)

The aerodynamic force term Srθ
XZF

(XZ)
a is a force vector in the r-θ frame which may be denoted

F
(rθ)
a . This vector may also be expressed as a transformation from the body frame (denoted as (b))

to the r-θ frame as

F (rθ)
a = Srθ

XZF (XZ)
a = Srθ

b F (b)
a (6.9)
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where the transformation operator is

Srθ
b =

 sin(γ + α) − cos(γ + α)

cos(γ + α) sin(γ + α)

 =

 cos(ψ − θ) − sin(ψ − θ)

sin(ψ − θ) cos(ψ − θ)

 (6.10)

which follows from the geometric relations illustrated in Figure 6.1, namely:

γ + α+ ψ − θ =
π

2
(6.11)

In this transformation, the coupling of aerodynamics and gravitational orbital kinematics finally

appears.

The 2D equations of motion for the orbiting body in the rotating body frame are

F (b)
g + F (b)

a = m

 u̇+ qw − rv

ẇ + pv − qu



= m

 u̇+ qw

ẇ − qu

 (6.12)

M (b)
ay

= Iyy q̇ (6.13)

where unit vectors have been now been omitted. Variable q = ψ̇ is the orbital-inertial pitch

rate, u and w are body frame components of velocity V , and F
(b)
g and F

(b)
a are gravitational and

aerodynamic forces in the body frame, respectively. The products rv and pv in Equation 6.12 are

eliminated when enforcing 2D dynamics, as the component of velocity in the y-direction v and

body angular rates about the x- and z-directions p and r1 are zero. The moment equation features

only the scalar variable M (b)
ay , which is the sum of all moments acting on the body in the body

frame. Here, again, no gravitational contribution will be present. Thus, M (b)
ay is entirely a function

of aerodynamics and acts only to rotate the body about its center of mass, as was the case in

Chapters 3 and 4 for a single degree-of-freedom system.
1 This yaw rate r should not be confused with the first component of the position r. The yaw rate is unused in

this work and is merely shown here along with the roll rate p for completeness of derivation.
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In the interest of developing more natural state variables, body linear velocities shall be

defined in terms of speed V and angle of attack α as

u = V cos(α)

w = V sin(α)

which is typical of atmospheric aircraft dynamics formulations[65]. The body frame-expressed

gravity vector F
(b)
g can be obtained using Equations 6.2 and 6.7 as

F (b)
g = [Srθ

b ]TF (rθ)
g =

µm

r2

 − cos(ψ − θ)

sin(ψ − θ)

 (6.14)

Equation 6.12 can now be written in component form as

−µm
r2

cos(ψ − θ) + F (b)
ax

= m[V̇ cos(α)− V α̇ sin(α) + qV sin(α)] (6.15)

µm

r2
sin(ψ − θ) + F (b)

az
= m[V̇ sin(α) + V α̇ cos(α)− qV cos(α)] (6.16)

Now note that speed may be defined in terms of perifocal variables as

V =
√
ṙ2 + r2θ̇2 (6.17)

which follows from the definition of orbital position given in Equation 6.3. With this definition,

the scalar acceleration V̇ may be expanded as

V̇ = V̇h
∂V

∂Vh
+ Ω̇

∂V

∂Ω
+ Vh

∂V

∂r

=
V̇hVh + Ω̇Ωr2 + VhΩ2r

V
(6.18)

where the following identities are used:

Vh ≡ ṙ

Ω ≡ θ̇

(6.19)

Substituting this expression for V̇ into Equations 6.15 and 6.16 and collecting derivative terms

yields

a11α̇+ a14V̇h + a16Ω̇ = −µm
r2

cos(ψ − θ) +
1
m
F (b)

ax
− Vh

V
Ω2r cos(α)− qV sin(α) (6.20)
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a21α̇+ a24V̇h + a26Ω̇ =
µm

r2
sin(ψ − θ) +

1
m
F (b)

az
− Vh

V
Ω2r sin(α) + qV cos(α)] (6.21)

where

a11 = −V sin(α) a14 =
Vh

V
cos(α) a16 =

Ωr2

V
cos(α)

a21 = V cos(α) a24 =
Vh

V
sin(α) a26 =

Ωr2

V
sin(α)

(6.22)

The state vector is now defined as

s =



α

q

h

Vh

θ

Ω


(6.23)

where h = r − re is the altitude above the Earth (re being the radius of an assumed–spherical

Earth), which is chosen instead of the direct variable r as a matter of slight convenience.

Equation 6.8 may be written in the state variable component form

V̇h =
F

(b)
ax

m
cos(ψ − θ)− F

(b)
az

m
sin(ψ − θ)− µ

(h+ re)2
+ (h+ re)Ω2 (6.24)

Ω̇ =
F

(b)
ax

m(h+ re)
sin(ψ − θ) +

F
(b)
az

m(h+ re)
cos(ψ − θ)− 2VhΩ

h+ re
(6.25)

Treating ψ as a state has been avoided since it relates to other states and γ via Equation 6.11 along

with the relation

γ = tan−1

(
Vh

rΩ

)
= tan−1

 Vh√
V 2 − V 2

h

 (6.26)

With Equations 6.20 and 6.21, Equations 6.24 and 6.25, Equation 6.13, and the two identities for

Ω and Vh (the latter of which also equals ḣ since the radius of the earth is assumed constant), the

system is now overdetermined by one equation. The inversion procedure that places the system in

a closed form for ṡ by solving for α̇ may use either Equation 6.20 or Equation 6.21. If Equation 6.20

is used, the final equation for α̇ will contain a term with 1/ sin(α) whereas the use of Equation 6.21

results in 1/ cos(α). The latter is slightly preferable in that most motion is more likely to be
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centered about α = 0 (at least if any assumption at all can be made in this regard). The final set

of state equations is

ṡ1 = α̇ =
[
(V 2

h − r2Ω2) sin(α) + 2rVhΩ sin(α) tan(α)
] Fx

mV 3
+
Fz cos(α)
mV

+
µΩ
rV 2

+ q (6.27)

ṡ2 = q̇ =
My

Iyy
(6.28)

ṡ3 = ḣ = Vh (6.29)

ṡ4 = V̇h = [Vh cos(α) + rΩ sin(α)]
Fx

mV
+ [Vh sin(α)− rΩ cos(α)]

Fz

mV
− µ

r2
+ rΩ2 (6.30)

ṡ5 = θ̇ = Ω (6.31)

ṡ6 = Ω̇ = [rΩ cos(α)− Vh sin(α)]
Fx

mV r
+ [Vh cos(α) + rΩ sin(α)]

Fz

mV r
− 2VhΩ

r
(6.32)

where care has been taken to express them in terms of α to emphasize the presence of body

dynamics, which are introduced primarily through α. Notation of source functions F (b)
ax , F (b)

az

and M
(b)
ay has been reduced to Fx, Fz, My, respectively, with the understanding that each is a

contribution of aerodynamic force or moment in the body frame. They are assumed to be functions

of states Vh, Ω, α and h only. The conclusions of Chapter 5 make the case for excluding q and

an assumption that the atmosphere is angularly symmetric will suffice for now in order to ignore

dependence on θ. Since Vh and Ω are components of velocity in the r-θ frame, dependence on each

variable separately is unnecessary, and the speed V (Equation 6.17) can be used instead. This is a

more natural arrangement of variables considering that the gas dynamic portion of the system is

easily expressed in terms of a speed and incidence angle given by the relations of Equations 6.14.

Each source function is then a scalar-valued function of three variables which requires a parameter

scan in each variable in order to generate the function.

6.2 Problem Construction Details

Source functions are defined as functions of altitude h, rather than the individual variables of

interest such as density and temperature. The reason this is done is that density and temperature

are typically assumed to vary independently with altitude, e.g. n(h), T (h). Thus any function that
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depends on n(h) and T (h) may be parameterized by h. This simplifies the definitions of source

functions greatly, which is useful in that it ensures the dimension of the parameter space does

not grow unnecessarily. Density and temperature (as well as gas composition in terms of resident

species and their partial densities) may vary with h as well as θ. The dependence on θ stems

from a number of physical phenomena such as differences in day and night sides of the Earth and

various space weather conditions. Although some atmospheric models may describe properties as a

function of angular location, this work uses the MSISE[56] model with the assumption that density

and temperature have only radial dependence.

To prepare the DSMC parameter scan, a configuration for each point in the parameter space

is generated. A choice of parameter ranges is made which covers the space of interest. For state α,

the range is naturally periodic as α ∈ [−π, π]. For pseudo-state V and state h, ranges should be

chosen which cover an expected set of possible orbital trajectories. In the most general sense, the

range in altitude may start at the ground and end at the maximum design apoapsis of an orbit.

Speeds would then range from zero to the maximum speed experienced in the design orbit. Since

DSMC is ill-suited for very low Kn flows, a different numerical method or hybrid code which joins

DSMC and a continuum CFD method would be required where Kn . 0.001. For Earth, this means

that DSMC is best used for simulations above roughly 80km in altitude (the upper mesosphere

or lower thermosphere). A value near this is an acceptable lower limit for h, with the speed of

a circular orbit at this altitude being a good choice for the lower limit of V . Upper limits may

be chosen then with the only restriction being the computational effort required to resolve the

parameter space within these limits to an acceptable accuracy.

Note that an even, or linearly spaced grid along the h-direction may require an unacceptably

high number of points in order to resolve the exponential nature of density with altitude. A non-

uniform grid which is weighted towards the low end of the range of h would be ideal. However, an

unevenly spaced grid may create difficulty in using the source function data which is to be generated

on this grid for approximation methods, should they be required. In the case of application of the

data directly in numerical integration of the equations of motion, as would often be the goal, such
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a grid would only require non-uniform trilinear interpolation. Considering the grid spacing in h is

particularly necessary because forces, moments and energy transfer tend to be much more sensitive

to changes in density than in speed. The range of speeds experienced by an orbiting object in

the thermosphere may be less than 1.0 km/s; while the range in density may span many orders of

magnitude, giving perhaps: 0.01 . Kn . 1000. Figure 6.2 gives an example range of the first 50km

of the thermosphere where density changes by three orders of magnitude while temperature only

approximately triples.
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Figure 6.2: MSISE[56] Low thermospheric properties (85km ≤ h ≤ 135km).

This problem is unique to the continuum-rarefied transition flow regime. In continuum fluids

problems, forces are typically more sensitive to speed if the aerodynamic force relation

F =
1
2
mgnV

2SCF (6.33)

is taken as a general rule. Quadratic dependence on speed contrasts with linear dependence on

density. However, this equation assumes that no serious changes in gas mechanics occur regardless

of the value of n. A gas dynamics problem such as an atmospheric egress or entry of an object

experiences a drastic shift in physical mechanisms that dominate the flow as it moves through

the transition region. At the top of the region, free-molecular flow eliminates the ability of the

system to dissipate energy and transfer momentum within the gas itself. A body in FM flow will
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not experience damped motion, as was shown in Chapter 3, and the flow has no knowledge of the

existence of the body prior to impacting it. As the body descends, it experiences collisional flow,

allowing shocks to form and the body to experience a coupling with the gas. The presence of more

molecules in closer vicinity which arises from increasing density causes exponentially more collisions

to occur, affecting the flow field and its interaction with the body faster than increases in speeds or

temperature. Sections 6.4 and 6.6 demonstrate this sensitivity using real source functions computed

for bodies in the thermosphere, which perhaps best characterizes continuum-rarefied transition for

spacecraft.

6.3 Computational Setup

Earth’s lower thermosphere is most representative of continuum-rarefied transition. This

region also presents the greatest difficulty in performing numerical simulations, and is thus an

appropriate choice for the demonstration of DSMC as a method suited for transition flows. The

parameter space and configuration parameters have been chosen with the goal of performing high-

fidelity simulations of spacecraft body dynamics under the influence of transition flow.

Computation of source functions Fx(V, α, h), Fz(V, α, h) and My(V, α, h) requires a large scan

over each of the directions V , α and h. Each point in the space [V α h] requires a single DSMC

simulation. To provide these functions at high resolutions, this scan becomes very costly. Prior

to applying any further reductions of order or approximations that may reduce the computational

requirements of this scan, it must be performed in order to establish an authoritative set of data

with which to compare future methods. For each set of data, only the body geometry and surface

boundary conditions need remain constant. For higher-order simulations, boundary conditions

would likely require promotion to state variables; which would, unfortunately, further increase the

dimension of the parameter space. In the interest of keeping this space minimal, all segments of

the surface of the objects used in simulations were set to use the standard Maxwellian diffuse gas-

surface interaction model described in Section 2.1.1, with a single constant surface temperature Ts.

A surface defined in this way may be described as being adiabatic. The remaining configurations



www.manaraa.com

186

for each DSMC simulation (or “run”) were constructed to minimize total run time to completion

without sacrificing more than a small amount of accuracy.

Given a specific choice of object, each run was chosen to use the configuration parameters

given in Table 6.1. The space covered by the entire set of runs is given as the lower section of

Table 6.1. Each direction is spaced evenly. Choices for the sizing of this space derive from the

arguments in Section 6.2. The range in h somewhat drives the remainder of the configuration.

By choosing a region of the atmosphere, the necessary density and temperatures are obtained

via linear interpolation of the MSISE model. The choice of h ∈ [85, 135]km assures flight within

lower thermosphere with free stream Knudsen numbers between approximately 0.01 and 20 for one-

meter-sized objects. Above 135km, diatomic nitrogen no longer dominates the species composition

as dramatically. Below roughly 80km, the computational burden per run quickly increases to

unacceptable levels, as DSMC is not the optimal method for continuum flow. In the interest of

maximizing performance, the simulations are restricted to this region such that the flow can be

assumed to consist of only N2. These altitudes also provide a range of V , if the rough assumption of

a circular orbit is made. Because density changes exponentially with altitude, the highest resolution

is given to the h-direction. The V -direction is given the lowest resolution because it is expected

that source functions have the weakest sensitivity to V , and also that V itself changes very little

over the range of altitudes chosen. The range in α is naturally periodic and is required to span the

full range of possible angles in order for the data set to be capable of describing body dynamics

in orbit. A high resolution in α is desirable, particularly for bodies without symmetry and bodies

with geometric features that differ greatly in the angular direction. For example, a spacecraft with

a long protrusion such as a boom might require high resolution in α close to the angular location

of the boom. The two bodies that were used in this study were introduced in Chapters 3 and

4: the NACA-0012 airfoil and the Arbject. The Arbject in this case is given by the parameters:

L = 0.75m, θ = 30deg, R = 0.15m, d = 0.3m, ω = 6rad/m.



www.manaraa.com

187

Table 6.1: Voldipar DSMC configuration variable values and parameters common to all runs of a
large parameter scan for generating dynamic source functions.

Description Symbol Value Unit

Domain length Lx 2.00 m
Domain height Ly 2.00 m
Num. cells in x Ncx 160
Num. of cells in y Ncy 160
Num. of subcells per cell (each dir.) Nsc 2
Variable time step adjustment γt 5.5
Time to steady state (imposed) tss 0.0010 s
Time to end tmax 0.0025 s
Num. time steps per sample Nsam 4
Temp. of body surface (all segments) Ts 300 K
Gas molecular mass mg 4.65× 10−26 kg
Gas viscosity power ω 0.74
Gas reference temp. Tref,N2 273 K
Gas reference diameter dg 4.17× 10−10 m
Gas rotational deg. of freedom ζ 2
Rotational relaxation constant Zrot 1/5
Voxel resolution (Voldipar only) nvox 700
Range of V - [7500, 8000] m/s
Number of points in V -direction Nv 41
Range of α - [−π, π]
Number of points in α-direction Nα 121
Range of h - [85, 135] km
Number of points in h-direction Nh 181
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6.4 Computed Source Functions for Thermospheric Flight

With the parameter space resolutions chosen, a total of 897,941 individual runs were required

to complete the set of data required to define source functions. In order to handle such a compu-

tation, a super cluster was employed to spread the set over as many processors as possible. The

University of Colorado JANUS super cluster was used to generate all necessary source function

data for the NACA-0012 airfoil and the Arbject. For the code resolutions used (i.e. number of

cells and voxels given in Table 6.1), each run required between three and twenty-two minutes of

time to complete for the airfoil and between three and thirty minutes for the Arbject. Normalized

distributions of wall-clock total computation time per run are plotted for both geometries in Fig-

ure 6.3 which each show a most probable run time of approximately 4.5 mins. The short times are

due to the computations being mostly within regions of Kn & 0.1 where collisions begin to become

relatively scarce, alleviating much of the computational burden of that part of the overall DSMC

algorithm.
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Figure 6.3: Normalized distribution of total DSMC computation time per run over the full set of
runs which comprise the parameter space defined by Table 6.1.
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6.4.1 Airfoil

A sampling of computed source functions for the NACA-0012 airfoil is given in Figures 6.4

to 6.7. Each plot is a slice at the maximum velocity of the parameter space, Vmax = 8000m/s. The

highly exponential nature of each function in density (and thus in h), makes visualizing qualitative

features difficult if the entire range of h is plotted. Thus, each function is shown over the top ten

kilometers of altitude in addition to the entire range of h.
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Figure 6.4: Source function for body x-force: Sample slices Fx(V = 8000m/s, α, h).
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Figure 6.5: Source function for body z-force: Sample slices Fz(V = 8000m/s, α, h).

All functions exhibit the expected symmetries about α = 0. At the lowest altitudes, My
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Figure 6.6: Source function for body moment about y: Sample slices My(V = 8000m/s, α, h).
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Figure 6.7: Source function for total power to the body’s surface: Sample slices P (V =
8000m/s, α, h).

possesses some higher frequencies (seen in detail in Figure 6.8a) for small angles. It is clear that all

functions experience a smoothing of these high frequencies as h approaches hmax. The maximum

altitude hmax does not constitute a definite free-molecular regime since Kn ≈ 20 at that altitude

can still be considered transitional. Nevertheless, detailed features tend to smooth as the body

experiences flow consisting of fewer collisions. Perhaps the most relevant function is My, since it

contributes the most directly to the body’s rotation. A visualization of the effect of moving through

the transition regime can be made by scaling My in a special way such that for a given speed (Vmax)
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and at every point in h, the function is normalized by

M ′
y(Vmax, α, h) =


My(Vmax,α,h)

max(My(Vmax,α,h)) for My(Vmax, α, h) ≥ 0

−My(Vmax,α,h)
min(My(Vmax,α,h)) for My(Vmax, α, h) < 0

This function is plotted for a set of chosen values of h at Vmax in Figure 6.8. A roughly equivalent

free-molecular solution is shown on each plot. This solution was obtained via the FM-panel method

discussed in Section 3.2. As the object ascends in h, its high frequency features are smoothed and

the scaled function approaches that of the free-molecular solution. The qualitative features of these

functions as they approach the FM limit agree with those given in Section 3.2. The central unstable

region discussed in Section 3.3.1 is present.
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(c) h = 99km.
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(e) h = 113km.
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Figure 6.8: Specially-normalized moment source function for the airfoil shown at a small set of
selected altitudes spanning the entire range of computed altitudes.
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6.4.2 Arbject

Analogous to the presentation of the NACA-0012 airfoil’s results, a sampling of computed

source functions for the Arbject is given in Figures 6.9 to 6.12. Transition of My is visualized for
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Figure 6.9: Source function for body x-force: Sample slices Fx(V = 8000m/s, α, h).
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Figure 6.10: Source function for body z-force: Sample slices Fz(V = 8000m/s, α, h).

the Arbject by plotting Equation 6.34 for a set of chosen values of h at Vmax in Figure 6.13. Again,

the moment function appears to approach a free-molecular solution. The Arbject’s geometry, which

possesses no symmetry, yields source functions which are unsurprisingly asymmetric in α for low

altitudes. However, the eventual limit of My shows that it begins to exhibit the property of an
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Figure 6.11: Source function for body moment about y: Sample slices My(V = 8000m/s, α, h).
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Figure 6.12: Source function for total power to the body’s surface: Sample slices P (V =
8000m/s, α, h).

odd function in α (i.e. −My(α) ≈ My(−α)), indicating a further insensitivity to geometry as Kn

increases. This property provides some reasoning for the common treatment of objects in free-

molecular flow in a purely ballistic manner. A comparison of body dynamics-inclusive modeling

with traditional ballistic methods is made in Section 6.6.
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Figure 6.13: Specially-normalized moment source function for the Arbject shown at a small set of
selected altitudes spanning the entire range of computed altitudes.
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6.5 Full Orbital Simulation Results for Thermospheric Flight

With the appropriate source data obtained, high-fidelity simulations of body dynamics in

orbit were made by integrating Equations 6.27 to 6.32. Source functions were evaluated directly by

using a trilinear interpolation scheme. These simulations give a time-accurate history of orbital and

body motion within the transition region of the lower thermosphere. With the data available, in this

configuration, any initial conditions may be chosen which fall within the range of computed data,

or which induce motion that does not leave this range. In the case of the altitude h climbing above

hmax, the source functions are set to zero in the proceeding latter cases for each object, effectively

enforcing a free cruise. This assumption is not accurate, as forces are not zero immediately above

h = 135km. This concession was made for the sake of allowing the simulations to continue unabated.

When data is computed up to an altitude where Kn & 100, free-molecular flow may assumed and the

analytical panel method described in Chapter 3 may be employed in-loop to allow the simulation

to continue without an upper bound in altitude. For the data provided, hmax does not give a

free-molecular regime.

When the object descends below hmin, the integration stops. Below hmin no approximation

or concession can truly be made without more data. Once the body enters continuum flow, a

set of source function data generated from continuum solvers must be obtained. And although

DSMC is capable of extending to continuum-level Knudsen numbers, continuum methods are more

computationally efficient in these lower–Kn regions.

A number of cases of interest which illustrate the detailed dynamics of the NACA-0012 airfoil

and the Arbject are now presented. For each case, the relevant time histories of V , α, h, q and γ are

given first. Next, a set of images are given which show the object’s geometry in the Earth-centered,

fixed inertial frame, evenly spaced in time over the simulation. Each frame shows the orientation

of the object and its body basis vectors (dashed lines), the natural orbital directions êr (pointing

outward from the earth) and êθ and the current velocity vector2 . The Earth is shown as a solid
2 The velocity vector may be difficult to see in these figures as many of the orbits presented are very close to

circular. In these orbits, the direction of V is extremely close to the orbital êθ direction.
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patch. The history of the orbital trajectory is shown as a line which trails the center of mass, thus

allowing direct visualization of orbital decay. The view in each image is of a frame that is centered

on the object’s center of mass and follows it without rotating, the edges of the frame remaining

aligned with the inertial X̂ (horizontal, positive to the right) and Ẑ (vertical, positive upwards)

directions. The center of mass’s position is to scale with respect to the Earth, while the geometry

itself is exaggerated for visualization purposes.

A set of images are then presented which each plot the distribution of power to the surface.

Each segment of the surface is given a color to indicate the value of power it is currently experiencing.

The units of the values given on the color bar are in Watts. The GSI model used in these simulations

was fully diffuse with full thermal accommodation, and the surface temperature was kept fixed,

thus enforcing an unrealistic adiabatic boundary condition. This de-coupling of heat transfer and

its effects from the overall dynamic system prevents the simulation from being truly accurate with

respect to its energy balance with the gas. Nevertheless, the power distributions given in the

following figures illustrate what locations on the object’s surface are receiving the most heat.

6.5.1 Airfoil

Cases of interest for the NACA-0012 airfoil are summarized in Table 6.2. The body is assumed

to be 1m deep and composed of a homogeneous material of density ρ = 2700 kg/m3. Relevant

Table 6.2: Initial conditions for each case of the full orbital simulation of the airfoil (Circular speed
is the speed calculated for a circular orbit at h0).

Case V [m/s] α0 [deg] h0 [km] q [deg/s] θ0 [deg] γ [deg]
1 Circular 9 122 0 35 0
2 Circular -95 128 4.6 35 0
4 7840 75 128 0 35 0

dynamic variable time histories for Case 1 are given in Figure 6.14. Geometric visualization for

eight frames, starting at t = 0, is shown in Figure 6.15 and corresponding power distribution

diagrams are shown in Figure 6.16. Case 2’s results are given in Figures 6.17 to 6.19 and Case 3’s

in Figures 6.20 to 6.22.
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Figure 6.14: Case 1: Time histories of dynamic variables for the airfoil in flight until hmin is reached.

Case 1 for the airfoil exhibits behavior similar to that seen in Chapter 3 at first. Figure 6.14b
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shows the airfoil oscillating about an angle of attack close to (but not exactly) α0. The unstable

region centered around α = 0 in free-molecular flow also exists for high h in these data (seen in

Figure 6.8). As the object descends, its oscillation increases in frequency as forces and moment are

increasing. Eventually the object switches to a different region of state space where it oscillates

between α ≈ 30deg and α ≈ 35deg. Its descent occurs more rapidly as the mean angle of attack

increases. The negative-definite flight-path angle γ, as seen in Figure 6.14d, shows that the airfoil

continues to cut further downward into the atmosphere throughout the simulation.

Case 2 begins with the airfoil at a high negative angle of attack and a non-zero initial rotation.

Figure 6.17b shows that it experiences roughly ten full rotations and then enters an oscillation which

decays in amplitude but grows in frequency as the airfoil descends. Similar to Case 1, the flight-

path angle begins a sharp decline once the object passes roughly 110km in altitude–a location very

close to Earth’s atmospheric turbopause.

Case 3 starts the airfoil in a mildly non-circular orbit. When it ascends above hmax aero-

dynamic forces are ignored. Figure 6.20c shows six full orbits being completed before the final

descent occurs, with apoapsis decaying faster than periapsis, indicating a circularization of the

orbit. Throughout the simulation the airfoil experiences an unbounded rotation in α. When it

descends into the viable region, near periapsis, its pitch rate increases. On its final orbit, the airfoil

remains below hmax and its rotation rate increases dramatically.
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Figure 6.15: Case 1: Geometric visualization for the airfoil in flight.
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Figure 6.16: Case 1: Visualization of total power distribution over the surface for the airfoil in
flight (at the same times as in Figure 6.15).
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Figure 6.17: Case 1: Time histories of dynamic variables for the airfoil in flight until hmin is reached.



www.manaraa.com

203

5100 5200 5300 5400 5500 5600

3500

3600

3700

3800

3900

4000

x [km]

y 
[k

m
]

t = 0 min
h = 128 km
γ = 0.000 deg
α = −95.000 deg
V = 7827.08 m/s

(a) Initial state: 1 of 8.

−1100 −1000 −900 −800 −700 −600 −500

6200

6300

6400

6500

6600

6700

x [km]

y 
[k

m
]

t = 15 min
h = 128 km
γ = −0.007 deg
α = −107.430 deg
V = 7826.52 m/s

(b) 2 of 8.

−6400 −6300 −6200 −6100 −6000 −5900 −5800

2000

2100

2200

2300

2400

2500

x [km]

y 
[k

m
]

t = 30 min
h = 126 km
γ = −0.020 deg
α = −138.372 deg
V = 7827.41 m/s

(c) 3 of 8.

−5100 −5000 −4900 −4800 −4700 −4600 −4500

−4600

−4500

−4400

−4300

−4200

−4100

x [km]

y 
[k

m
]

t = 45 min
h = 123 km
γ = −0.031 deg
α = 107.993 deg
V = 7829.62 m/s

(d) 4 of 8.

1400 1500 1600 1700 1800 1900

−6500

−6400

−6300

−6200

−6100

−6000

x [km]

y 
[k

m
]

t = 60 min
h = 119 km
γ = −0.037 deg
α = −98.245 deg
V = 7832.32 m/s

(e) 5 of 8.

6100 6200 6300 6400 6500 6600

−1600

−1500

−1400

−1300

−1200

−1100

x [km]

y 
[k

m
]

t = 76 min
h = 114 km
γ = −0.046 deg
α = −54.275 deg
V = 7834.56 m/s

(f) 6 of 8.

3900 4000 4100 4200 4300
4750

4800

4850

4900

4950

5000

5050

5100

5150

5200

5250

x [km]

y 
[k

m
]

t = 91 min
h = 106 km
γ = −0.085 deg
α = 0.264 deg
V = 7835.79 m/s

(g) 7 of 8.

−2700 −2600 −2500 −2400

5750

5800

5850

5900

5950

6000

6050

6100

x [km]

y 
[k

m
]

t = 106 min
h = 85 km
γ = −0.505 deg
α = −22.298 deg
V = 7792.35 m/s

(h) hmin reached: 8 of 8.

Figure 6.18: Case 2: Geometric visualization for the airfoil in flight.
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Figure 6.19: Case 2: Visualization of total power distribution over the surface for the airfoil in
flight (at the same times as in Figure 6.18).
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Figure 6.20: Case 3: Time histories of dynamic variables for the airfoil in flight until hmin is reached.
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Figure 6.21: Case 3: Geometric visualization for the airfoil in flight.
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Figure 6.22: Case 3: Visualization of total power distribution over the surface for the airfoil in
flight (at the same times as in Figure 6.21).
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6.5.2 Dynamic Analysis: Airfoil

When the case beginning with α0 = 0 and q0 = 0 is simulated, the airfoil should not rotate

at all, due to its symmetry. However, this assumed equilibrium is only quasi-stable, meaning that

it is the center of a region within which dynamic trajectories would likely exist as limit sets if the

plotted subspace were the entire state space. The presence of h as a state, which tends to pull such

possible limit sets out of their apparent location prevents the aforementioned points from being

defined as true equilibria. Any slight moment will cause the body to begin rotating and enter an

oscillation about α = 0. This behavior occurs in the free-molecular version of the airfoil’s single

degree-of-freedom simulation from Chapter 3. Without extremely precise numerical results, this

equilibrium cannot be captured in simulation and must be inferred. Figure 6.23 shows the result

of simulating the airfoil starting at this equilibrium for h0 = 130km. The moment source function
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Figure 6.23: Time history of α and q for the airfoil starting at the assumed quasi-stable equilibrium
of [α0 = 0deg, q0 = 0deg/s] and h0 = 130km.

My is not exactly zero at α0 for any value of h. Higher resolution DSMC runs near this region

would assist in refining My but will likely never achieve My(α0) = 0. However, in practice, it is

impossible to know the attitude of a spacecraft to infinite precision. It is enough to understand the
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local behavior of the body in question without capturing its equilibria exactly. A phase diagram

consisting of the [αq]–subspace such as Figure 6.24a can illustrate the local dynamics of the origin in

the airfoil’s case. From examination of Figure 6.24a it is clear that the airfoil starting at α0 = 0 will
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Figure 6.24: Airfoil origin–local phase diagrams.

enter one of two separate temporary limit sets. Neither of these sets remain intact as h decreases,

however. Equilibria appear to exist near |α| ≈ 12deg, again alluding to the presence of α∗, noted

in Section 3.3. In a more refined set of data, each of these points would occur at [α0 = α∗q0 = 0]

rather than at the offset positions shown in Figure 6.24a, which occur for q0 ≈ −0.06921deg/s.

Figure 6.24b shows the same portrait except with the object starting at a lower altitude. An

artificial asymmetry is visible in both the α and q directions. Each temporary limiting region that

was clearly defined in the high altitude case seems to drift outward while increasing the oscillation

frequency in the low altitude case. This is the slow drift seen in Figure 6.14b which occurs at

approximately 150mins. Yet, both of these local phase portraits are expected for a symmetric

object, simply offset from the origin. And while it is desirable to increase the accuracy with which

these dynamics are simulated, the pertinent characteristics remain visible even with offsets present.

It is possible, for example, to begin a simulation close to α∗ where the airfoil remains relatively

static in α. Figure 6.25 gives an example of the airfoil starting close to this quasi-stable equilibrium

at a high altitude. Forces are weak enough to allow α to change very little until the airfoil reaches
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lower altitudes, inducing larger oscillations.
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Figure 6.25: Time history of α and q for the airfoil starting at the actual quasi-stable equilibrium
of [α0 = α∗ = −11.25000deg, q0 = −0.06921deg/s] and h0 = 130km.

6.5.3 Arbject

Cases of interest for the Arbject are summarized in Table 6.3. The body is assumed to be

1m deep and composed of a homogeneous material of density ρ = 2700 kg/m3. Relevant dynamic

variable time histories for Case 1 are given in Figure 6.26. Geometric visualization for eight frames,

starting at t = 0, is shown in Figure 6.27 and corresponding power distribution diagrams are shown

in Figure 6.28. Case 2’s results are given in Figures 6.29 to 6.31 and Case 3’s in Figures 6.32 to

6.34.

Case 1 starts the Arbject with its concave feature forward, into the flow as shown in Fig-

ure 6.27a. Figure 6.26b shows it entering a decaying oscillation of an initial amplitude roughly equal

to α0. This oscillation drops in amplitude, increases in frequency and centers about a positive angle

of attack once h falls below the turbopause region. Finally, the Arbject undergoes another dynamic

transition to a very high-frequency, low-amplitude oscillation about an even higher angle during

the last ten minutes of the simulation.
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Table 6.3: Initial conditions for each case of the full orbital simulation of the Arbject (Circular
speed is the speed calculated for a circular orbit at h0).

Case V [m/s] α0 [deg] h0 [km] q [deg/s] θ0 [deg] γ [deg]
1 Circular -175 122 0 35 0
2 Circular 125 122 0 35 0
3 7835 80 125 0 35 0

Case 2 is similar to Case 1 but starts the Arbject at a different angle of attack. Familiar

dynamic evolution occurs, with the initial high-altitude stable oscillation transitioning to oscillations

about different central angles, with higher frequencies, as the Arbject descends. This case illustrates

the expected sensitivity to initial conditions of an asymmetric object.

Case 3 starts the Arbject in a mildly non-circular orbit, ignoring aerodynamic forces above

hmax, similar to the airfoil’s Case 3. The Arbject rotates freely when it is above the viable re-

gion, and experiences oscillations when below it. This is evident from the partitioned behavior in

Figures 6.32b and 6.32e.
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Figure 6.26: Case 1: Time histories of dynamic variables for the Arbject in flight until hmin is
reached.
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Figure 6.27: Case 1: Geometric visualization for the Arbject in flight.
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Figure 6.28: Case 1: Visualization of total power distribution over the surface for the Arbject in
flight (at the same times as in Figure 6.27).
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Figure 6.29: Case 2: Time histories of dynamic variables for the Arbject in flight until hmin is
reached.
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Figure 6.30: Case 2: Geometric visualization for the Arbject in flight.
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Figure 6.31: Case 2: Visualization of total power distribution over the surface for the Arbject in
flight (at the same times as in Figure 6.30).
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Figure 6.32: Case 3: Time histories of dynamic variables for the Arbject in flight until hmin is
reached. Aerodynamic forces are set to zero above hmax.
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Figure 6.33: Case 3: Geometric visualization for the Arbject in flight.
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Figure 6.34: Case 3: Visualization of total power distribution over the surface for the Arbject in
flight (at the same times as in Figure 6.33).
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6.5.4 Dynamic Analysis: Arbject

Subspace phase portraits may be made for the Arbject in order to more closely examine its

dynamic properties. Figure 6.35 presents the [αq]–subspace portraits, starting with high-altitude

initial conditions (h0 = 130km). Figure 6.35a shows some trajectories which start with high enough
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(a) Version 1: larger range in q0.
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Figure 6.35: Arbject phase diagrams for high-altitude initial conditions (h0 = 130km). Two ver-
sions, each with a different set of initial conditions, are given for visual clarity.

initial positive rotation (q0 > 0) inducing unbounded rotations (“non-returning”). Other lower,

positive values of q0 are slow enough to induce a few complete rotations and eventually reverse

direction, returning to the central subspace of [−π, π] (“Returning”). All values of q0 < 0 appear

to be non-returning, however. Figure 6.35b shows a set of three central regions, each separated

by saddle points at [α ≈ −73.80deg, q0 ≈ −0.07deg/s] and [α ≈ 65.17deg, q0 ≈ −0.07deg/s]

and centered about quasi-stable equilibria at [α ≈ −113.90deg, q0 ≈ −0.07deg/s], [α ≈ 0.62deg,

q0 ≈ −0.07deg/s] and [α ≈ 103.15deg, q0 ≈ −0.07deg/s]. The initial condition of α0 = 180deg

escapes the central regions and enters a state-space orbit about a neighboring identical set of

regions (which must necessarily exist due to the periodic nature of α).

At lower altitudes, the portrait becomes more complicated. State-space trajectories drift in

various directions depending on the initial conditions. Figure 6.36 gives a set of initial conditions
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which show this behavior. Most initial conditions tend to result in a decaying amplitude oscillation
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Figure 6.36: Arbject phase diagram for low-altitude initial conditions (h0 = 100km).

about a certain α by the time the object has descended to its minimum altitude. The highly asym-

metric geometry of the Arbject makes identifying all possible final orientations difficult, however

it appears from the trajectories shown in Figure 6.36 that there are three common limits in α.

These limits are the angles about which most of the final oscillations of the Arbject are centered

when the simulation begins with low enough |q0|. They are located at α ≈ −45deg, α ≈ 10deg and

α ≈ 60deg. Excessive initial rotation in the system causes unrecoverable, unbounded rotation or

tumbling, but for low |q0|, it can be expected that the Arbject eventually reaches an angle of attack

close to one of these limits. For example, Figure 6.26b shows the Arbject approaching α ≈ 60deg

and Figure 6.29b shows it approaching α ≈ −45deg.
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6.6 Comparisons to Traditional Ballistic Methods

A high-resolution parameter scan over V , α and h allows high-fidelity numerical simulations to

be performed which incorporate the effect of body dynamic motion. Traditionally, many spacecraft

have been treated as a ballistic body where only a drag coefficient is calculated and assumed

sufficient. One of the tenets of this work is the demonstration that these traditional drag problems

do not provide enough information to accurately model motion in orbit of spacecraft and debris.

A comparison between some traditional “drag-only” ballistic model and the high-fidelity, coupled,

body-orbital dynamics simulations would be appropriate. However, there exist no drag models

specific to either of the geometries used.

An equivalent averaged-drag or ballistic model may be created using the force data that

was computed by assuming the body is only subject to atmospheric drag. This assumption is

made by treating the body as a point mass having no body dynamic motion, which removes the

dependency on the angle of attack α. This model can be constructed by defining a mean drag

force which integrates out dependence on the angle α, which the computed data already possess.

If this integration is performed, the drag remains a function of the other two states V and h as

D(V, h). This form may be retained and used to perform a simplified numerical integration where

it is linearly interpolated much the same as the full body-orbital simulation was. However, it is

useful to examine the quality of the function’s dependence on V , as it is expected to be rather weak.

Figure 6.37 shows this functionality for the Arbject. Clearly there is very little change across the

range of speeds calculated. This insensitivity to speed compared to that of density (i.e. altitude

in atmospheric flight problems) is typical of flows under these conditions. The small envelope of

change for drag force defined by the lower and upper curves in Figure 6.37 make a reasonable

case for assuming a constant speed. In light of this fact, it seems also reasonable to further refine

D(V, h) by integrating out dependence on V . However, this time the averaging will only introduce

very minor inaccuracies and is being performed to reduce the dimensionality of the drag function

for convenience. The very strong sensitivity to altitude should remain, thus giving the final mean
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Figure 6.37: Drag force for the Arbject taken as an average over α, calculated from the hi-resolution
source data.

drag definition of

D(h) =
1

Vmax − Vmin

Vmax∫
Vmin

D(V, h)dV =
1

2π(Vmax − Vmin)

Vmax∫
Vmin

π∫
−π

D(V, α, h)dαdV (6.34)

The limits of integration depend on the range of available computed source data. However, the

range of α should cover 2π in order to properly consider the possibility of full rotation. The central

curve labeled as Vave in Figure 6.37 shows D(h) for the Arbject’s data.

As a point of interest (particularly when attempting to compare with classical satellite drag

theory and data), a drag coefficient may be defined in a similar manner to the drag force. Unfor-

tunately, using the standard definition of aerodynamic force of

D(h) ≡ 1
2
mgn(h)V (h)2ACD(h) (6.35)

where A is a characteristic area and mg is the mass of a gas molecule is somewhat ambiguous. This
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is because of the necessity of assuming either a constant speed, or, as is required here, a speed as

a function of altitude h. Seeing as how V and h are independent spatial directions in the state s,

and thus in the computed data set, V (h) cannot be defined. Instead, the form of Equation 6.35

may be used to guide a definition of an average drag coefficient CD(h) by incorporating the desired

dependence on V into the integration over V as

CD(h) ≡ 1
πmgn(h)A(Vmax − Vmin)

Vmax∫
Vmin

1
V 2

 π∫
−π

D(V, α, h)dα

 dV (6.36)

This version of CD(h), plotted in Figure 6.38 3 , produces a function which is of different form

than drag force, which may appear awkward in the context of a traditional satellite drag prob-

lem. The necessity of n(h) appearing in the definition as a non-constant variable compounds
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Figure 6.38: Specially-defined mean drag coefficient (Equation 6.36) for the Arbject calculated from
the hi-resolution source data.

3 The value of A used is 0.75m which is a characteristic length of the Arbject used to produce the computed source
data; i.e. variable L in Appendix C. Density n(h) is obtained by linearly interpolating from the MSISE[56] model.
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this awkwardness, giving lower coefficients where higher drag force is encountered, at low altitudes.

Nevertheless, it yields values within the range of typical ballistic drag models. It is important to

note that although Equation 6.35 is given as a definition, it is not the definition that is used here.

Equation 6.36 is written as a definition purposefully, with the implication that it is defined by

taking inspiration from the classic definition of Equation 6.35 and not formally derived from it.

6.6.1 Simplified dynamics without body motion

To remove the effect of body dynamics on the system is to return to a point mass or ballistic

description of orbital dynamics. This assumption is equivalent to setting α to zero in Equations 6.27

to 6.32, which aligns the body axes with the velocity vector. In a ballistic model, forces acting

on the center of mass due to aerodynamics are typically decomposed into components along the

directions described as the drag-lift (DL) frame. This frame is shown in Figure 6.39. Drag force

Figure 6.39: Orientation of the drag-lift frame compared to the body frame.

is positive along the x̂D direction, which is always equal to −V̂ and lift force is positive along

the x̂L direction, which is normal to the velocity and forms a right-handed system such that the

cross-direction is positive out of the perifocal plane in the same direction as the orbital angular

velocity vector. Since α = 0, aerodynamic force in the DL frame F
(DL)
a = [D L]T is related to the
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body force by the transformation

Sb
DL = −

 cos(α) − sin(α)

sin(α) cos(α)

 = −I (6.37)

which means that body force, as it appears in Equations 6.30 and 6.32, is written in terms of lift

and drag as F
(b)
a = [−D − L]T. Setting α = 0 in Equations 6.29 to 6.32, they now become the

only equations necessary. The averaged drag D(h) (and a similarly-defined L(h)) may be used for

D and L to give a set of simplified, average, ballistic equations:

ṡ1 = ḣ = Vh (6.38)

ṡ2 = V̇h = rΩ2 − µ

r2
− VhD(h)

mV
+
rΩL(h)
mV

(6.39)

ṡ3 = θ̇ = Ω (6.40)

ṡ4 = Ω̇ = −2VhΩ
r

− ΩD(h)
mV

− VhL(h)
mV r

(6.41)

This system may be used to compare with the full, high-fidelity system by performing inte-

grations of each under the same initial conditions. One relevant metric is the decay of an orbit,

which may be examined by plotting the state h(t). Figure 6.40 shows a comparison of this type for

the Arbject, which uses a circular starting orbit at an initial altitude of h0 = 125km. Figure 6.40

shows the same type of comparison for the airfoil. A range of initial angles of attack are shown,

each giving a different decay and taking a different amount of time. The asymmetry of the Arbject

means there is no obvious functionality of decay time (the time to decay from h0 to hmin = 85km)

on α0. Table 6.4 lists relative error of total decay time td of the average DL ballistic model with

respect to each simulation of the proper body dynamics model.

As the orbit decays into the lowest altitudes, the two models diverge more, causing up to

almost eight percent of error in decay time in the set of α0 chosen for the Arbject. For the airfoil,

the maximum relative error occurs at α = 0deg, with sixty percent. The striking difference between

the decay behavior of each geometry using these comparisons is due to the fact that the Arbject

is rather blunt regardless of its angle of attack, while the airfoil has a larger disparity in its drag
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Figure 6.40: Comparison of orbit altitude decay of the Arbject for the full, high-fidelity simulation
for a range of initial angles of attack with the equivalent average drag-lift ballistic representation
of the same geometry.

between α = 0deg where it has a very small stream-normal profile and α = 90deg where it is fully

blunted to the stream. Therefore the airfoil’s drag has much a higher standard deviation from its

α-averaged value, D(h). The total drag force on the airfoil is also higher than the Arbject when it

is at a fully-blunted orientation (e.g. |α| = 90deg) due to significantly more pressure drag at lower

altitudes. Furthermore, because of the greater magnitude of forces and moments on the airfoil

at higher |α|, the motion it experiences over the course of its descent differs greatly from what it

experiences when it starts in a stable region of state space. For high initial angles of attack, the

airfoil is much more likely to enter into an unstable tumbling motion, inducing more drag than if

it had remained in a static or low-amplitude stable oscillation.

Additionally, it is important to note is that the averaged drag and lift are still calculated

from the full set of data which makes their values more accurate in terms of how well these terms

represent the effect of body rotation on average. Without a high-resolution data set which provides

source functions of such quality, D(h) and L(h) may be far less accurate unless they are empirically
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Figure 6.41: Comparison of orbit altitude decay of the NACA-0012 airfoil for the full, high-fidelity
simulation for a range of initial angles of attack with the equivalent average drag-lift ballistic
representation of the same geometry.

determined (e.g. from actual, recorded flight data). Again, the purpose of this comparison is

to demonstrate some of the possible differences between simpler predictive methods (which often

only give drag) and what can be achieved with inclusion of body dynamics. An example of these

differences is clear when comparing the two distinct geometries examined in this chapter.
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Table 6.4: Relative errors in total decay time for the example problems shown in Figures 6.40 and
6.41.

α0 [deg] Airfoil εtd [%] Arbject εtd [%]
-180 5.58 2.4
-144 12.06 3.4
-108 12.1 -3.8
-72 0.62 1.3
-36 -35.26 2.41
0 -60.14 -3.4
36 -35.30 -2.5
72 0.02 5.0
108 12.64 7.6
144 11.38 3.8

6.7 Summary of Results

Aerodynamic forces were incorporated into a perifocal description of orbital dynamics to

yield a complete description of aerodynamically-induced body dynamics in orbit. The resulting

set of equations of motion couple body and orbital dynamics via the angle of attack, which is the

primary degree-of-freedom associated with body dynamics in this description. The aerodynamic

inputs to these equations are two force and one moment source function. Each source function was

shown to be capable of being expressed as a function of the three dynamic variables: V , α and

h. This formulation reduced the subsequent parameter scan computation to a tractable level. To

generate each of the source functions, a DSMC computation was performed for every combination

of V , α and h, forming a parameter scan operation over a 3D subspace of the total six-dimensional

state space. Resolutions of this parameter space were chosen, along with DSMC resolutions and

configuration parameters such that the computation of these data were possible on the available

super cluster computing system. Having generated the source data, the equations of motion were

integrated in time to perform simulations of two objects: the NACA-0012 airfoil and an Arbject.

At each step in the integration, source functions were obtained by linearly interpolating the raw

source data. The resulting system allowed for high-fidelity time-accurate simulations of the objects

in orbit under arbitrary initial conditions.
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To best illustrate the effectiveness of including body dynamics resulting from rarefied aero-

dynamic inputs in the transition regime, the source data parameter space was chosen to span a

region of orbital flight within the Earth’s lower thermosphere, from 85km to 135km in altitude. In

this region, both objects were clearly demonstrated to experience a transition from rarefied (near-

free-molecular) flow to near-continuum flow over the course of a number of example simulations

which simulated an atmospheric entry. The effect of this transition on rigid bodies, which has not

been well-studied, was illustrated via the presentation of the evolution of source functions (e.g.

Figures 6.8 and 6.13) through the transition region, and by dynamic analysis of phase portraits of

relevant subspaces.

Both geometries were observed to share some similar qualitative properties. Each experiences

decaying oscillations in α which remain centered about a certain α which is usually close to α0 for

higher altitudes. As the objects descend, the increase in magnitude of aerodynamic forcing due to

density increase causes shifts in state space trajectories. Case 1 for the airfoil and Cases 1 and 2 for

the Arbject finish their simulations by approaching what appears to be a final limit in α. It may be

that as an object descends below the thermosphere, oscillatory motion is eventually damped out,

leaving only a final orientation at which the object remains until it slows considerably enough for

gas forces in the stream-wise direction to be comparable to other directions. The specific evolution

of motion is different for each set of initial conditions, however, which further emphasizes the need

to examine transition flow dynamics.

Finally, a comparison was made between the high-fidelity simulations which incorporated

body dynamics and an averaged drag-lift or ballistic interpretation of the source data where body

dynamics were effectively removed. The airfoil was shown to be poorly modeled by an average

ballistic model, showing as much as 60% relative error in orbital decay time with respect to the

high-fidelity body-dynamic model, while the Arbject fared better with a maximum relative error

of approximately 8%. This analysis also provided some reason to ignore the dependence on V of

source data. Source functions were seen to be highly insensitive to V , compared to their sensitivity

to altitude (i.e. to density and temperature). This reasoning allows the reduction of the parameter
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space of each function with minimal loss in accuracy. For extensions of this work to 3D, this is a

very useful conclusion.
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Final Summary and Conclusions

Modern spacecraft systems operating in low Earth orbit can no longer ingore or marginal-

ize the effects of their motion within rarefied atmosphere if they are to meet the requirements of

industry, governments and militaries. Ballistic or drag-only models of rarefied aerodynamics are

insufficient in predicting orbital decay, performing accurate atmospheric science and for designing

control systems and hardware to meet the rigorous requirements of these spacecraft. The appear-

ance of modern tools and methods, namely numerical tools such as the direct simulation Monte

Carlo method, have created an opportunity to raise the level of fidelity with which spacecraft

aerodynamics are treated to a level similar to that seen for atmospheric aircraft.

A framework of approaches, considerations and methods was constructed by identifying the

challenges in numerical techniques and dynamic modeling current present in spacecraft systems

and contrasting them with aircraft systems. The continuum-rarefied transition flow regime was

identified as being the most crucial fluid regime for this class of problems. Most spacecraft which

operate in low Earth orbit, and certainly those which enter an atmosphere are subject to the

effects of this regime. Lack of availability of appropriate predictive computational methods had

prevented transition flow dynamics from being examined in detail. Furthermore, overly-simplistic

ballistic descriptions of complicated systems consisting of asymmetric geometry, unknown flight

conditions and surface interaction physics have continued to be used. And although DSMC and

other numerical methods have matured, spacecraft dynamics remains exclusive of body dynamic

motion and its coupling with rarefied gas dynamic forcing.

There exist details of motion of orbiting and entering objects which cannot be known without
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inclusion of body dynamics resulting from accurate modeling of aerodynamics. Such characteristics

were shown to exist even in free-molecular flow by applying available closed-form methods to

generate forces and moments of some example geometries in realistic orbital conditions. The NACA-

0012 airfoil was used to demonstrate this by intergrating single degree-of-freedom equations of

motion subject to in-loop-evaluated aerodynamic force and moment functions. Characteristics

such as regions of stability and locations of equilibria were identified numerically. Subsequently,

simulations of this simple system showed the airfoil–generally considered an uninteresting geometry–

could oscillate at high enough frequencies to possibly be of concern to designers and analyists. This

simulation method was then extended to the transition regime, at Knudsen numbers of 1 where

DSMC was used to obtain forces and moments a priori which were then used both directly in

integration and approximated using a piecewise lienar method. The purpose of the latter approach

highlighted the possiblity of reducing the highly non-linear effects of gas flow to a set of tractable,

analytical representations which could be used to gain further insight into the system’s character

and contribute to the design of control systems.

The problem of flow-motion coupling was addressed in the context of rarefied gas flow. This

problem was determined to be of possible importance in dynamic simulation and analysis since

moving objects naturally affect their surrounding flow and vice versa. The state variables which

appear in state-space descriptions of body dynamic motion include rates such as the pitch rate q

or, as in the single degree-of-freeom model of Chapters 3 and 4, angle of attack rate α̇. In order to

generate forces and moments from aerodynamic numerical simulations, functionality on these rates

is, in general, required. Unforunately. the feedback of this system, often seen in fluid-structure

interaction problems in continuum flow, was shown to be difficult to describe. Simple models of

rotational motion are desirable to use in numerical simulations in order to avoid excessive computa-

tional cost. The transpiration boundary condition method was chosen to be the method of choice,

should DSMC simulations be required to simulate motion without actually moving the geometry.

The initial hypothesis was posed that rigid-bodies would be decoupled from the hypersonic flows

common to orbital flight, allowing a method such as transpiration to be acceptable. It was de-
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termined, however, that in order to properly examine this phenomenon, a true moving-boundary

DSMC code would be required. However, some concession was made to use the tools available.

Through numerical experiments, it was shown that rates of rotation of two types of geometry

could be ignored when the rates were small with respect to the thermal speeds of the near-field

gas. Whether transpiration is an acceptable model at high rates was not determined. However,

an analysis lead to the conclusion that actual motion and transpirationally-mimicked motion were

no different from the prespective of energy and momentum balance of the surface with the gas.

Furthermore, a computational concern was identified which prevents accurate DSMC simulation of

flows with rotation rates which give certain transpirational velocities. Overall, flow-motion coupling

was determined to remain a difficult problem to characterize. Nevertheless, the numerical studies

concluded that objects in hypersonic transition flow could ignore coupling of dynamic rotational

rates with the flow. This reduced the necessary dimension of the parameter space which defined

the final set of simulations of orbital motion, greatly reducing the computational cost of generating

the data over this space.

Demonstrations were given of a NACA-0012 airfoil and an arbitrarily asymmetric object

(“Arbject”) in thermospheric 2D perifocal orbital and entering flight which utilized high-fidelity

aerodynamics obtained from a vast number of DSMC code runs. These DSMC runs were made

on the CU JANUS super cluster system. Roughly 9e5 individual code runs were performed per

geometry in order to provide forces in two directions, one moment and power transfer. Focusing

specifically on the transition region for meter-sized objects, this parameter space covered the al-

titude range of 85km to 135km, a range of 7500m/s to 8000m/s in orbital speed and all possible

angles of attack ([−pi, pi]). This gave a range of Kn between 0.01 and 20. Source function data

were then linearly interpolated in an integration of 2D orbital-aerodynamic equations of motion

to generate high-fidelity, time-accurate simulations of motion of the objects in flight and descent

through the lower thermosphere. The effects of transition flow were clearly observed as each ob-

ject’s source functions could be seen to resemble their equivalents obtained from their free-molecular

panel method equivalents (first shown in Chapter 3). Functions which contained high frequencies
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at the lowest altitudes (below roughly 100km) were smoothed to include only a few major modes at

high (approaching free-molecular) altitudes. This “blunting” characteristic was observed to carry

over into the dynamic motion of the objects. Both objects experienced rotational motion that was

high oscillatory about a few key angles of attack at high altitudes but were subject to drift to other

limiting angles as the objects descended.

The details of the dynamic responses of these objects permitted teh identification of likely

modes of operation. The airfoil possessed three quasi-equilibria at high altitudes. The airfoil would

experience quasi-stable oscillations about these locations (which were locations of angles of attack at

effectively zero pitch rate) at high altitudes. As it descended, these three locations would drift away

from their initial locations in state space, causing the airfoil to approach a small set of asymtotic

angles of attack at the conclusion of the simulations at 85km in atltitude. The Arbject’s possessed

much more complicated dynamic characteristics, as expected. However, a similar analysis allowed

the identification of quasi-equilibria in this system as well. When the arbject was started near

one of these quasi-equilibria it maintined its orientation with only minor oscillations for most of

its descent, only experiencing large amplifications at very low atltitudes. Furthermore, despite the

asymmetry of the object and its sensitivity to small changes in initial conditions, it was observed

to also posssess a set of specific, asymptotic limits in its orientation at α ≈ −45deg, α ≈ 10deg and

α ≈ 60deg.

These types of dynamic characteristics can be identified for any object. Those used in the

examples are merely tools to demonstrate how useful such an analysis may be. Blunting behavior

and identification of equilibria are particularly useful. One possible application is the selection of

certain attitudes and rates in order to avoid (or induce) certain motion without the imposition of

external control actuators. Spacecraft geometry may be designed with dynamic characteristics in

mind, similar to who aircraft may be designed with consideration for avoidance or excitation of

certain linear eigenmodes. In fact, linear eigenmodes may be also identified for spacecraft in rarefied

flow should certain trim flight conditions be prescribed. The wealth of additional information

deriving from high-fidelity aerodynamic models has wide-reaching application in control system
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and hardware design.

Finally, full-orbital simulations were compared with an average drag-lift ballistic description

obtained by taking the mean drag and lift over all angles of attack and all speeds for each altitude.

Orbit decay times for objects using the ballistic description differed by as much as eight percent for

the Arbject and sixty percent for the airfoil. Ignoring the contribution to ballistic drag from body

dynamics created much more error for the airfoil because of the significant difference between flight

at low and high angles of attack. When the airfoil is at a low angle, it suffers minimal pressure drag.

At high angles, it experiences more pressure drag than the Arbject at an equivalent angle. Although

the Arbject is asymmetric and contains a significant concavity, it has less variability in ballistic

drag over all angles of attack than a “flat” object such as the airfoil. Even the eight percent

maximum relative error in decay time for the Arbject may be significant, however. This error

corresponds to roughly twenty minutes of time, which can result in a large uncertainty in the final

ground impact location. Stansberry and Johnson confirm this when discussing USSTRATCOM

Joint Space Operations Center’s re-entry prediction capabilities:

“TIP (Tracking and Impact Prediction) messages provide the best estimates of reen-
try time and location but have large uncertainties. Even at T-2 hours, the uncer-
tainty of reentry time is on average +/- 25 minutes for nearly circular orbits. This
equates to +/- 12,000 km on the Earth.” Ref. [68]

Considering that aerodyanic forcing is overwhelmingly dominant during re-entry, it is clear that

the introduction of body dynamics via high-fidelity aerodynamic modeling contributes to serious

improvements in re-entry prediction.

6.8 Extensions to 3D

Essential for practical application in real spacecraft systems is the treatment of 3D body

dynamics in 3D orbits. However, the demonstrations and analyses presented in this work are

independent of problem dimension. Had the resources been available, 3D simulations using 3D

source function data would’ve been equally straightforward to implement. The restriction to 2D in

this work was made primarily because of the current state of Voldipar’s geometry models. Use of
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other codes could be substituted should they posses the same level of computational performance,

batch-run capability and configuration options. Additionally, source functions must depend on at

least two additional angles in 3D; which increases the dimension of the parameter space used for

source data generation to intractable levels given the computing resources available.

Each individual DSMC computation for the airfoil and Arbject in 2D required between 3

and 30 minutes (see Figure 6.3) on a single processor. In 3D, one to two orders of magnitude more

computation time would be required to perform similarly accurate runs without parallelization.

A 3D DSMC code almost certainly requires a parallel implementation in order to make each run

complete in reasonable time. Unfortunately, the dependence of 3D source functions on the side-slip

angle and roll angle introduce likely impractical or even impossible computational requirements.

More methods of parameter space reductions must be investigated in order to reduce this burden.

Though at the expense of accuracy, some means of obtaining such methods may lie in the analysis

of sensitivity of source funtions to their various parameters. In Section 6.6 it was shown that

drag and lift force were high insensitive to orbital speed when compared to altitude (i.e. density).

This property may be exploited by ignoring dependence on speed completely with likely only a

small penalty in accuracy. Similar analyses might motivate using coarser resolutions in certain

parameter space directions. It may also be possible to use data obtained from lower dimension

scans along certain directions to correct source functions rather than directly compute them at all

locations in the state space. In this formulation, source data might be obtained within a smaller

parameter space where some independent variables are kept constant. Additional low-dimensional

scans would generate corrective data which would then be applied to adjust the final value of each

source function by perturbing it from its nominal value. Such methods relate to the piecewise

Taylor approximations shown in Chapter 4 but applied in a different context.

6.9 Other future work

Orbital simulations were done under the assumption of angularly symmetric atmosphere

in order to minimize source function dimension. This is perhaps the most egregious affront to
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accuracy in the results of Chapter 6. Density varies so significantly within Earth’s atmosphere

that it is unlikely that treatment of aerodynamic forces can assume no dependence on location

or ignore contributions to density changes from a number of sources such as solar activity. This

fact also implies that the parameterization of density and temperature by altitude would not be

possible. Source functions would have to include dependence on number density n, temperature T

and orbital location (one angle, θ in 2D, and two angles in 3D) as separate variables.

Another assumption of convenience is that the objects’ surfaces remained adiabatic at all

times, with a fixed temperature and GSI model. In reality, some coupling between power transferred

to the surface and surface temperature and GSI model adjustment would be required. As an

object’s surface heats, its GSI model or at least its parameters must be adjusted appropriately.

Even a simple diffuse GSI model with full thermal accommodation would require updating of

surface temperature. This, in turn, would increase the mean reflected speed which then affects

the momentum balance of the object with the gas. For more complicated GSI models such as CL,

adjustments in accommodation coefficients also might be required.

Most future work would then focus on increasing the number of parameters upon which the

coupled aerodynamic–orbital system depends. Each of the aforementioned improvements would

introduce unacceptable expansions to the dimension of source functions. Necessary are more pe-

ripheral techniques which can make approximations to source functions by utilizing smaller sets of

data. For spacecraft which have trim attitudes, linearization has enormous potential to be capable

of incorporating atmospheric variations, surface heating and GSI management without requiring

unreasonable computing resources.
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Appendix A

DSMC Resolution Convergence Study

Table A.1 shows the range of values for a resolution convergence study for the NACA-0012

airfoil with the conditions given in Table 4.2 at an angle of attack of α = 45deg. A square domain

was used with side lengths of Lx = Ly = 2.0 m and the leading edge of the airfoil was positioned at

(xoff , yoff ) = (0.5, 1.2)m. The final simulation time tmax to was set to twice the steady-state time.

Table A.1: DSMC parameter values for convergence study for the 1m chord NACA-0012 airfoil at
Kn =1, Ma =24.18.

Description Variable Nominal Value Range for study

Num. cells total Nc 40,000 [15000,150000]
Ratio of real-to-simulated particles Fnum 3 ×1013 [5× 1012, 1× 1014]

Number of pixels per dir. nvox 500 [200,900]
Time to steady-state tss 0.0015 s [0.0005,0.0050] s

Results for the drag force on the airfoil as a function of each “pseudo-independent” variable, and

are shown in Figure A.1. Some of the parameter space was covered with simulations with constant

parameter values centered about the given nominal parameters in their respective categories. For

example, Figure A.1a plots dimensional drag force as a function of the total number of DSMC

collision/sample cells in the domain for three values of Fnum (which is inversely related to the

number of simulation particles).

The most converged result appears to be in time (Figure A.1d), which is expected as more

sampling reduces the statistical scatter in the calculation of macroscopic values such as drag force.

Particle resolution would be expected to converge as well, however no convergence trend is evident
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in Figure A.1b. Increasing the number of simulated molecules by reducing Fnum reduces statistical

scatter [3]. It appears that the smallest number of simulated molecules (roughly 120,000) is sufficient

to yield a drag result to within one percent of the result for the maximum number (roughly 2.4

million). A more comprehensive study is required to elucidate the convergence behavior of this

parameter. Figure A.1c indicates little advantage in pixel resolution greater than nvox = 400, thus

the nominal value of 500 is assumed sufficient for this case. Unexpectedly, cell resolution results

shown in Figure A.1a do not show a clear convergence trend. As cells become smaller, they hold

fewer particles and thus experience fewer collisions, which can prove to be statistically undesirable.

This particular behavior of DSMC computations is documented by Bird [5]. Voldipar does not

currently implement gradient-adapted sample cells. This lack of a sample-refining technique in the

cell structure of the code can lead to poorer results for high cell resolutions. Both cell and particle

resolution studies show the drag force variation of less than one percent. The parameter to which

drag force is the most sensitive, geometry resolution, varies by about two percent. This sensitivity

likely results from the calculation of surface forces by sampling particle collisions on surface panels.

Sample accuracy increases with higher geometric resolution as more pixels are assigned to each

line segment of the boundary. A set of resolutions that resulted in run times of approximately

10-12 minutes each were chosen with the expectation that results would be within five percent

of converged values, or on the order of ±0.01 N. These values are given in Table A.2. All runs

appear to converge to a value of 2.49 N ± 0.01 N. Assuming a frontal area given by S ≈ Lc sin(α)

where α = 45 deg and Lc = 1.0m, the converged drag coefficient for all studies appears to be

approximately 1.90.

Table A.2: DSMC values for transition-regime source function generation for a 1m chord NACA-
0012 airfoil at Kn = 1, Ma = 24.18, and Tin = 252.9K.

Description Variable Value

Number of cells total Nc 22500
Ratio of real-to-simulated particles Fnum 7 ×1013

Number of pixels per dir. nvox 500
Time to steady-state tss 0.0015 s
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Figure A.1: DSMC pseudo-independent variable resolution convergence results for drag force for
the airfoil in N2 at α = 45deg, Kn =1, Ma =24.18, and Tin = 252.9K.
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Appendix B

Enforcing DSMC Inflow Equivalency

The energy and momentum balance analyses of Chapter 5 may be facilitated by numerical

studies which measure the total energy and momentum crossing the boundaries of the domain of

a test problem. The “true-equivalent” method of simulating motion where boundary conditions

are adjusted to mimic a flow with changing angle of incidence requires special consideration when

implemented in a particle method such as DSMC.

A example of “raw” DSMC (only small interval time sampling) with a moving boundary

condition is given here. The rate of characteristic stream direction rotation is α̇ = 18, 000 deg/s,

with Kn=0.01, Ma=28.40, N2. There is an inconsistency with the formulation of this problem as

equivalent to a case involving an actual moving body. The equivalent case is usually the imposition

of a stream or characteristic velocity that changes in time, rotating the velocity vector by an

angle appropriate to the desired angular rate (see Figure 5.2). In continuum methods, this is

straightforward. In particle methods like DSMC, this velocity is imposed by setting the external

stream boundary condition velocity to the desired value over time. When the angle changes beyond

zero, more than one boundary now has a component of bulk flow that enters the domain. Each

domain boundary must enter particles through itself. The number of particles that enter per

unit time, per unit area is determined as a function of the external stream properties: density,

temperature and velocity. When more than one boundary has a bulk flow component that directs

inward, a greater number of particles will be calculated, in total, to enter the domain than would

be when the stream is aligned with a single coordinate direction (i.e. α = nπ/2 , n = 0, 1, 2...)
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simply due to the triangle inequality. The “true” case (an actual, moving internal body) would

naturally maintain a constant stream velocity oriented in this manner. Therefore imposing any

stream boundary velocity between intervals bounded by nπ/2 causes the domain to enter more

molecules and thus transport more energy and momentum into the domain than the true case,

despite the bulk velocity that the entering molecules are given being correct.

In order to correct this discrepancy, the desired stream velocity can be scaled in order to

cause the entering number flux to be equivalent to the true case. Consider the case of flow entering

from the left at velocity V , moving right at a desired stream speed of Vc = ‖V ‖, aligned with the

horizontal direction as the true case. When the imposed stream velocity angle is changed to α in

order to mimic an internal boundary’s rotation by −α, the left and bottom boundaries each change

their inward components to VL = Vc cos(α) and VB = Vc sin(α), respectively. Now define V ′
L and

V ′
B as the effective components that should result in a total domain entry flux equivalent to the

flux at α = 0 (the true case). The following conditions can be imposed:

V ′
L + V ′

B = Vc (B.1)

V ′
B

V ′
L

= tan(α) (B.2)

Equation B.1 collapses the triangle inequality and Equation B.2 ensures the angle α is preserved.

Solving this system gives the simple result

V ′
L =

Vc cos(α)
sin(α) + cos(α)

V ′
B =

Vc sin(α)
sin(α) + cos(α)

(B.3)

or

Veff = [V ′
L V

′
B] =

1
sin(α) + cos(α)

[Vc cos(α) Vc sin(α)]T =
1

sin(α) + cos(α)
V (B.4)

which states that the desired stream velocity V need only be scaled by the scalar value of (sin(α)+

cos(α))−1. Figure B.1 illustrates how this scaling ensures a constant inward number flux for a

specific case. There is one caveat to note about this new effective stream velocity. This is that

‖Veff‖ ≤ ‖V ‖, so if entering molecules use Veff as their bulk velocity, they will be moving slower

than the true case, even if the domain’s total inward number flux is maintained. This is to say that
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Figure B.1: Entry number flux per unit time for two inward directions (left and bottom), as well
as their real sum, and adjusted sum according to Equation B.4.

the quantity to maintain is not number flux or velocity separately, but inward power flux. Power

flux is enforced as constant when entering molecules must still use the original velocity V when

they are created, while the calculation of number flux is performed with the effective velocity Veff .

When the simulation is allowed to function without scaling, the inflow power to the domain

would be expected to follow the “real” curve in Figure B.1. When the adjustment method is

applied, the inflow power should remain constant for all time (and angle). These expectations are

verified in Figure B.2.

High frequency fluctuations in Pin occur due to the molecule entry algorithm in DSMC. Entry

naturally can only occur for an integral number of molecules. The number of entering molecules

is a real number and thus the remaining fraction of molecules not capable of being created on one

iteration of the procedure are carried over and summed with the next iteration’s calculated entry
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Figure B.2: Power budget over the entire domain for Kn=0.01, Ma=28.40 with a moving boundary
condition at rate α̇ = 18, 000 deg/s over a range of α = [0..90] deg. Motion begins at 1ms.

number, causing a regular oscillation of entry number. The large sinusoidal deviation (from the

rough initial value) seen in Figure B.2a is absent in Figure B.2b. Removal of this artificial increase

allows an accurate inspection of the power budget of the equivalent case. This budget indicates a

steady increase of power transmitted to the gas itself (Pg) as well as to the body (PGSI
surf ) as the

flow angle increases over time. This implies more energy storage inside the domain (either in the

gas itself, as an increase in translational and rotational energy) due to the increasing bluntness of

the body geometry to the flow direction.
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Appendix C

Arbject Description

The 2D arbitrary object (termed the Arbject) is a figure defined by the five independently-

selectable parameters: p1,p2, R, d, ω. It may also be given in terms of one of its characteristic

lengths L and an angle θ as: p1, L, θ, R, d, ω in which case p2 = L[cos(θ) sin(θ)] . It is entirely

asymmetric, contains concavity, various differing curvatures, sharp and shallow angles and straight

lines. These features make it a reasonable choice for benchmarking purposes. Figure C.1 shows the

arbject’s geometry and visualizes these parameters.

x
y

Figure C.1: Arbject geometry and illustration of parameters.

Eight points are defined that give key locations. The first two are the specified parameters
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p1,p2, the remaining six are related as

p3 = p1 + [0 R]

p4 = p2 + [0 R]

p5 = p2 − [0 R] (C.1)

p6 = p2 − [0 3R]

p7 = p2 + [0 3R]− [0 d]

p8 = p1 − [0 R]

The regions inscribed with R in Figure C.1 are circles. The top curve is determined by the following:

x0 =
1
2
(p3x + p4x) (C.2)

B = [tanh(ω(p3x − x0))− tanh(ω(p4x − x0))]
−1 (C.3)

Ax = B(p3y − p4y) (C.4)

Ay = −B [p3y tanh(ω(p4x − x0)) + p4y tanh(ω(p3x − x0))] (C.5)

ft(x) = Ax tanh(ω(x− x0)) +Ay (C.6)

To create the Arbject, each component should be created separately by evaluating respective equa-

tions of circles, lines and the curve ft(x) with as high a resolution as is desired. To use these

components, it is often necessary to ensure that the points at which each component is evaluated

do not overlap at their endpoints (the eight key points given as Equations C.1) and that the wind-

ing/plotting order of each component is the same. The latter requirement implies to create a set

of ordered points that, when plotted, form a strongly simple (topologically) polygon.

The characteristic length of the Arbject may be specified in a number of ways. The length

L, shown in Figure C.1 is one obvious option: L = ‖p2 − p1‖. Another choice to consider may be

max(L,R, d) or simply the maximum dimension of the entire figure.
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